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1. Introduction 

Economic development, urbanization, and population growth trends are raising the demand for 

water around the world. The uncertainty of future conditions, most noticeably climate change, 

urges society to decide upon and pay in advance for mitigation efforts for uncertain events. This, 

in turn, requires quantification of the distribution of outcomes to both action and inaction 

strategies.  

The urbanization rate is increasing, mainly because of rural-to-urban migration. Globally, 

30 percent of the world population lived in urban areas in 1950, a figure that increased to 54 percent 

in 2014. It is expected that urban population will reach 66 percent of the global population in the 

world in 2050 (United Nations, 2014). Increased urban population requires investment in 

infrastructure for water supply and wastewater services. A growing urban sector in almost every 

country around the world and the likelihood of climate change impacts on natural water supplies 

make treated wastewater a needed resource. Treated wastewater is a potential source of steady 

water supply for various purposes, such as irrigation, aquifer recharge, cooling in energy 

production facilities, and more (Hernández-Sancho et al., 2015). Indeed, 2016 data from the Food 

and Agriculture Organization of the United Nations Statistics Database (FAOSTAT) indicates a 

significant increase in both the number and designed capacity of wastewater treatment facilities 

globally, growing in number from 18,000 to 72,000, and growing in capacity from 255 to 307 

billion m3/year, between 1990-1998 and 1999-2013, respectively.  

A recent survey by Sato et al. (2013) identified the untapped potential of wastewater reuse 

in the world. Of the 181 countries surveyed in the period between 1995 to 2012, 40 and 30 percent 

provided partial and complete information, respectively, on wastewater generated, treated and 

reused, reported in cubic kilometers per year. While not a complete count, this data set suggests 

that global wastewater generated, treated, and reused annually amounts to 340, 165, and 24 km3, 

respectively. This is a significant potential that has not yet been tapped sufficiently in many 

countries. Using Israel as a case study, Reznik et al. (2017) valued the contribution of treated 

wastewater reuse to the local water economy on a long-term planning horizon by approximately 

330 to 460 thousand USD per 1 million m3 of reused water annually, depending on the level of 

natural recharge assumed. While these estimates are obviously dependent on local conditions, 

which most likely vary considerably on a global scale, the figures cited above yield an estimate of 
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some 46 to 64 billion USD in worldwide economic welfare that could be realized annually through 

reuse of existing treated wastewater. An alternative measure is an equivalent of about 54 to 76 

percent of the estimated value of future damages to water resources associated with a 1C° increase 

in global mean temperature (Tol, 2002). Thus, the potential of returning these benefits to the 

economy cannot be ignored. Furthermore, if indeed the objective of cutting untreated wastewater 

disposal globally in half by 2030 will materialize, as indicated in SDG 6.3 and SDG 6.3.1 of the 

Sustainable Development Goals report (United Nations, 2018), these benefits can even be larger.  

As more countries realize the role of wastewater in their water resources management, and 

invest public and private funds in wastewater systems, several points of caution must be addressed. 

The multiple effects of population increase and climate change impacts on water resources and 

water services have ramifications for policy, which is the aim of this paper. We will start by 

addressing the likely impacts of climate change on the water and wastewater sectors, and why they 

are critical for policy. 

Likely Impacts of Climate Change on the Water and Wastewater Sectors 

Scientists’ predictions of climate change impacts on various sectors have already materialized in 

many parts of the world (Mideksa and Kallbekken, 2010; Kusangaya et al., 2014; Kurukulasuriya 

and Mendelsohn, 2017). Sectors that are most vulnerable to climate change include agriculture and 

water resources. Some of the impacts of climate change that are predicted to affect these sectors 

include temperature increase and alteration of precipitation patterns (Intergovernmental Panel on 

Climate Change, 2014). For the most part, economic literature on the impacts of climate change 

addressed its effects on agricultural productivity, using both econometric and programming 

approaches (an appropriate coverage of both can be found in Schlenker and Roberts, 2009; 

Kaminski, Kan and Fleischer, 2013; Burke and Emerick, 2016; McCarl, Thayer and Jones, 2016, 

and references therein). A prominent discussion within the associated econometric literature is 

concerned with the usefulness of different methods to identify the true impact of climate change 

in order to elicit relevant policy actions (Schlenker, Hanemann, and Fischer, 2005; Deschênes and 

Greenstone, 2007; Schlenker and Roberts, 2009). Contributing to this discussion, Burke and 

Emerick (2016) summarized the debate and highlighted the essence of the different arguments by 

stating that (p. 107):  
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"Due to omitted variables concerns in the cross-sectional approach the recent 

literature has preferred the latter panel approach, noting that while average 

climate could be correlated with other time-invariant factors unobserved to the 

econometrician, short-run variation in climate within a given area (typically 

termed “weather”) is plausibly random and thus better identifies the effect of 

changes in climate variables on economic outcomes.  

While using variation in weather helps to solve identification problems, it perhaps 

more poorly approximates the ideal climate change experiment. In particular, if 

agents can adjust in the long run in ways that are unavailable to them in the short 

run, then impact estimates derived from shorter run responses to weather might 

overstate damages from longer run changes in climate." 

It has been noted that climate change could also significantly affect the human-built 

infrastructure through increasing uncertainty in future air temperature, precipitation, wind speed, 

and rise in sea level. Climate change may thus influence existing and planned urban water systems 

(Plósz, Liltved and Ratnaweera, 2009; U.S. Global Change Research Program, 2018). The 

wastewater sector is being affected by climate change in various ways. For example, higher 

amounts of pathogens could be carried to the wastewater treatment plant (WWTP) if it is connected 

to storm water collection systems. Higher levels of rainfall also can increase flows of sewage fed 

via the collection system. These two types of events can lead to operational needs beyond the 

treatment plant’s capacity, thus, impacting reliability and operating costs (McMahan, 2006; 

Cromwell, Smith and Raucher, 2007; Langeveld, Schilperoort and Weijers, 2013). Another impact 

of climate change on wastewater treatment performance is its effects on the biological processes 

used in treatment plants, specifically dropping the nitrogen removal rate (Danas et al., 2012; Vo et 

al., 2014; Zouboulis and Tolkou, 2015). In particular, Zouboulis and Tolkou (2015:202) found that 

intra-annual variations in temperature affect the performance of anaerobic reactors and 

stabilization ponds, compared with activated sludge, and aerobic biofilm reactors that are less 

sensitive to temperature fluctuations due to their “higher technological input and mechanization 

levels.” Cromwell and McGuckin (2010) also identify potential challenges in the operation of a 

wastewater treatment plant resulting from changes in temperatures. Authors emphasize the 

sensitivity of the treatment process to temperature extremes. Because WWTPs are designed for a 
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range of assumed flows and sewage characteristics, as well as climatic conditions, any changes to 

the designed values may lead to under performance or even failure (Danas et al., 2012). 

Referring to the earlier discussion regarding climate change impacts on agricultural 

productivity and the adaptation measures that can potentially be feasible under this setting, it is 

important to note that the impacts on the wastewater sector we just reviewed are much more 

mechanical in nature than the effects on food production. Therefore, contrary to the agricultural 

sector, the set of tools existing at the individual decision unit level (i.e., treatment plant versus a 

farm) are much more limited. Generally, even at a higher decision-making level, the notion of 

adaptation seems to be a very complex task in the wastewater treatment sector (Cromwell and 

McGuckin, 2010). It is therefore quite surprising that in spite of the engineering observations 

regarding impact of climate change on wastewater treatment performance, most of the recent 

economic estimates of wastewater treatment cost functions that we are aware of (e.g., Dasgupta et 

al. 2001; Chen and Chang, 2002; Yu et al., 2011, Hernandez-Sancho et al., 2015; Jiang and 

Hellegers, 2016) do not account for any future climate impacts. 

Using available data from China, our paper focuses on quantifying the impact of climate 

change on wastewater treatment cost while controlling for other more traditional determinants. 

The contribution of our work is in identifying the possible impact of changes in climatic conditions 

on the costs of wastewater treatment. This, in turn, enables an educated assessment of the impact 

of future uncertainty with respect to population growth, climate trajectories, and policy 

interventions on the sustainability of the wastewater treatment sector. While the analysis in this 

paper uses data from China, the approach we utilize could be applied to any country around the 

world where data might be available. This approach offers the ability to assess several policy 

interventions that could be considered by regulatory agencies in order to sustain the wastewater 

treatment sector.  

The paper develops as follows: Next we describe the situation in China that is used to apply 

our approach; we also present in detail the dataset utilized for the estimation of the cost function. 

Section 3 describes the empirical framework and specifications. In section 4, we present the results 

of the econometric estimation of a sector-level treatment cost function. Section 5 presents 

simulations of future climate change scenarios and their impact on wastewater treatment costs, 
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using the estimated cost function parameters from section 4. Section 6 concludes and addresses 

policy implications of our analysis and results. 

2. Wastewater Treatment in China and Data 

China was selected as the focus of our approach in this study for various reasons. First, data on 

economic variables of a major component of the wastewater industry is readily available. Second, 

China is a growing economy with major investments in the wastewater sector. Third, China faces 

climate variation across the landscape of the wastewater treatment facilities around the country. 

Increased attention is given to climate impacts on the wastewater treatment sector in China, due to 

the large amount of energy and chemicals consumed in wastewater treatment processes (Chai et 

al., 2015; Wang et al., 2015). Government regulations of urban drainage and sewage treatment1 

require that climate trajectories should be considered in the process of wastewater treatment 

planning.  

The Wastewater Sector of China  

With fast industrialization and urban growth, wastewater discharge in China has increased from 

48.2 billion tons (~m3) in 2004, to 71.1 billion tons (~m3) in 2016 (National Bureau of Statistics of 

China, 2016). Construction of WWTPs has also intensified over this period. Between 2006 and 

2016, the number of WWTPs has more than tripled, increasing from 1,019 to 3,552, with treatment 

capacity increasing from 68.62 to 179.46 million m3 per day (Ministry of Housing and Urban-

Rural Development of China, 2017).2 This development is, however, unbalanced geographically 

and across urban and rural centers (Ministry of Environmental Protection of the People’s Republic 

of China [MOEP], 2014). 

The treatment technologies mostly used in China are conventional Activated Sludge 

process (AS), Oxidation Ditch, Sequencing Batch Reactors (SBR), Anaerobic/Anoxic/Oxic 

(AAO), and Anoxic-Oxic (AO) processes. Less widely used are Biofilm processes, Membrane 

Bioreactors (MBR), natural biologic treatment systems (e.g., constructed wetland), and Anaerobic 

Biologic treatment processes (Jin, Zhang and Tian, 2014; Zhang Q. et al., 2016). Nearly 75 percent 

                                                           
1 Effective on 01-01-2014, available from: http://www.gov.cn/flfg/2013-10/16/content_2508291.htm (in Chinese) 
2 During our work, we found several official data sources indicating a different total number of treatment plants in the 
industry. After consulting with a professional in this field, we decided to use the current reference. While these 
differences amount to roughly 20 percent, we do not think they should significantly affect the analyses presented in 
the paper.  

http://www.gov.cn/flfg/2013-10/16/content_2508291.htm
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of WWTPs in China are medium-size (1-10 × 104 m3/day). Small (<1 × 104 m3/day) and medium 

WWTPs mainly utilize Oxidation Ditch and SBR processes, while the majority of large plants 

(>10 × 104 m3/day) utilize AAO processes (Jin, Zhang and Tian, 2014).  

The WWTPs in China follow the national standards determining the quality of treated 

wastewater discharge (GB 18918–2002). This standard defines four classes for effluent disposal, 

separated by the levels of constituents imposed under each class (MOEP, 2002). These classes are 

determined based on the age of the treatment plant as well as on the receiving water body (Wang 

et al., 2015). The wastewater effluent meeting Class 1A can be reused or discharged to a 

recreational or scenic water body. Class 1B effluents can be reused or disposed of to the sea 

through running rivers or streams (Sun et al., 2016). In addition to the national standard, every 

province may issue its own effluent discharge standard, and the local standard must be stricter than 

or equal to the national standard. According to Jin, Zhang and Tian (2014) only 20 out of 31 

provinces in mainland China have issued such standards.  

Description of the Data 

We analyze a cross-section data of 163 WWTPs from China, sampled in 2006. The dataset is 

described in detail in Jiang and Hellegers (2016), and Jiang, Dinar and Hellegers (2018).3 For each 

WWTP in the dataset, we obtained its geo-reference, the year of establishment, its treatment 

capacity, the actual volume treated in 2006, several quality parameters of influent and effluent 

water, and the annual investment costs and annual operating and maintenance (O&M) costs. The 

descriptive statistics of these and other calculated variables is presented in Table 1.  

Table 1 about here 

We also utilize information regarding the treatment processes (technologies) used in each 

plant. Following Zhang Q. et al. (2016), these are divided into eight groups as depicted in Table 

2.4 We also report in Table 2 the share of each technology group in the WWTPs and in the total 

designed capacity in our sample. We compare these shares to those reported by Jin, Zhang and 

                                                           
3 Due to data misspecification regarding the year of establishment, we had to remove two plants from the original 
sample in Jiang and Hellegers (2016), and Jiang, Dinar and Hellegers (2018). 
4  We refer the interested reader to Tchobanoglous and Burton (1991) for detailed information regarding the 
characteristics of the different processes.  
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Tian (2014), based on data from 2012, and by Zhang Q. et al. (2016), based on data from 2013, 

for the entire wastewater treatment sector in China.5  

Table 2 about here 

It appears from Table 2 that AAO technology is underrepresented in our sample, and that 

Oxidation Ditch and AS technologies are overrepresented, compared to the data reported in the 

other two sources. The rest of the sample seem to be representative of the entire population in 

terms of technologies used. As reported earlier, China’s wastewater treatment industry had 

developed dramatically between 2006, the year of our sample, and the years reviewed by Jin, 

Zhang and Tian (2014) and Zhang Q. et al. (2016). It seems natural that some of the differences 

appearing in Table 2 might be a result of that rapid development. Nevertheless, we calculate 

sampling weights based on these differences and introduce them into the estimation procedure, 

which is described in the following sections.  

In order to include the impact of climate on the cost of wastewater treatment, we 

supplemented the dataset with long-term weather data taken from the widely used Climatic 

Research Unit (CRU) database (Harris et al., 2014). We used the inverse distance weighting (IDW) 

method in order to fit each WWTP in the sample with its own set of climate variables. For each 

treatment plant in the sample, we computed both historical and the sample period values of each 

climate indicator as depicted in Table 3. That is, based on the year of establishment, we computed 

for each plant its unique 30-year historical average of each climate variable listed in Table 3. We 

also computed for each plant the same variable (observed weather) for the year 2006, the year of 

our sample. Descriptive statistics summary of these climate variables is presented in Table 3. 

Table 3 about here 

It appears from Table 3 that on average in our sample, between the establishment of a 

facility and the year 2006, temperatures have increased, and their distribution within the year has 

narrowed. Precipitation has declined on average and became less variable. Figure 1 depicts the 

spatial climate differences among the sample’s WWTP observations.  

 

                                                           
5 We use these two sources as references for comparison, as they present slight to moderate differences in reporting, 
and both rely on official and reliable data sources. 
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Figure 1 about here 

As can be seen in Figure 1, there is a very strong and well-defined relationship between 

the climatic characteristics of the WWTPs in the sample. Observations from high-temperature 

regions also are characterized by high precipitation levels (Figure 1a), lower variance in 

temperature within the year (Figure 1b), and higher variance in precipitation within the year 

(Figure 1c).  

In order to examine the temporal trends of the climate variables in our sample, we compute 

for each such variable the ratio between the 2006 sample year value of that variable, and its 

historical average (normal). These ratios are presented in Figure 2 as a function of temperatures 

and precipitation historical averages, respectively.  

Figure 2 about here 

Figure 2 shows that all the treatment plants in the sample have experienced an average 

temperature increase with respect to the climate preceding their establishment, and that this 

increase was larger for plants in colder regions (Figure 2a). The variation in temperature within 

the year was mostly affected in warmer regions, where both higher and lower variation levels can 

be observed (Figure 2b). Average precipitation levels generally decreased during the period of 

comparison, with some exceptions in the warmer and wetter regions (Figure 2c). The same can be 

said with respect to the intra-annual variation in rainfall (Figure 2d). Overall, while our sample 

accounts for only 16 percent of the WWTPs in China (in 2006), by examining Figures 1 and 2 it 

can be concluded that our data adheres to the general climate trends in China, as well as to the 

regional climatic contrasts described in Piao et al. (2010).  

3. Empirical Specifications 

Following previous studies that estimated cost functions for wastewater treatment, we adopt a 

reduced form estimation approach, and assume a constant elasticity functional form relationship 

between costs of treatment and explanatory variables (Fraas and Munley, 1984; Schwarz and 

McConnell, 1993; Fraquelli and Giandrone, 2003; Friedler and Pisanty, 2006). These assumptions 

are translated into an explicit definition of a cost function, as presented in general terms in Equation 

(1): 
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where TVC  are the total annual operating and maintenance (O&M) costs of the WWTP in the 

2006 sample year, { }, ,∈ ≡kz Z T P D  is a set of plant’s characteristics represented by dummy 

variables; T  is a vector of dummy variables representing the treatment technology of the plant, 

capturing differences in technology effectiveness; P  is a vector of dummies for the province where 

the plant is located, capturing provincial differences; and D is a vector of variables indicating the 

decade at which the treatment plant was built, capturing technological improvements in recent 

decades. { }, , , , ,∈ ≡mx I V C YX Q W  is the set of continuous determinants, where I  is the gross 

investment in the plant at the year of establishment (in 2006 constant dollars), V  is the average 

daily volume treated in the plant during the 2006 sample year, C  is the plant’s daily average 

treatment designed capacity, Y  is a count of years since the establishment of the WWTP, and Q , 

and W , are vectors of quality parameters and climate indicators, respectively. The α ’s and β ’s 

are the estimated parameters.  

We include the investment in the treatment plant at the year of its establishment as a proxy 

for other design characteristics, such as area and other immobile capital associated with the 

treatment process. We expect this variable to have a positive and marginally decreasing effect on 

costs. Both volume of treatment and designed capacity are used in our analysis. Our hypothesis is 

that the closer the actual volume treated is to the designed capacity, the more cost-efficient the 

plant is. Regarding quality, we follow common practice in the literature on wastewater cost 

estimates and use of biological oxygen demand (BOD) level as a single representative indicator 

for contaminants’ levels. This is also supported by professional literature suggesting that all the 

indices in our dataset (i.e., BOD, COD and TSS) are closely related (Tchobanoglous and Burton, 

1991). Our underlying hypothesis regarding the impact of climate on treatment costs is that each 

plant’s treatment efficiency is a function of its design. That design, in turn, is a function of the 

prevailing climate in the region and the time at which the plant was built. Any changes with respect 

to that benchmark will affect the treatment efficiency and, consequently, the plant’s operating and 

maintenance costs. 
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While it has been argued that accounting for the differences between treatment 

technologies in the estimation of cost functions is important  (Hernández-Sancho, Molinos-

Senante and Sala-Garrido, 2011a), studies that evaluated performances among WWTPs in 

different settings didn’t reach a consensus regarding the preferred technology in terms of cost 

efficiency (Sala-Garrido, Molinos-Senante and Hernández-Sancho, 2011; Molinos-Senante, 

Hernández-Sancho and Sala-Garrido, 2015; Molinos-Senante, Sala-Garrido and Lafuente, 2015).  

Looking for examples to support the previous argument, we could find only esoteric 

treatment cost-estimation studies that addressed this issue. Sato et al. (2007), for example, 

compared capital and O&M costs of two treatment processes, namely up-flow anaerobic sludge 

blanket (UASB) and waste stabilization pond (WSP), among 25 WWTPs in the Yamuna River 

basin in India. Their findings suggest that the WSP is the cheaper technology of the two. Niu et al. 

(2016) focused their analysis on wastewater treatment costs in China. They concluded that 

chemical treatment processes are cheaper than biological ones. Authors have further classified 

biological treatment processes and indicated that anoxic-oxic (AO) has the lowest cost. To 

conclude, studying the literature concerned with the effect of different treatment processes on 

operating costs, we couldn’t find any a priori justification for clear dominance of one technology 

over the other. To further strengthen this assumption, we refer to Tran et al, (2016, 2017) who 

demonstrated that a combined processes approach, to achieve different treatment level goals, is the 

optimal cost-minimizing strategy.  

We use the province dummies as both economic development indicators (Niu et al., 2016) 

and (in the absence of other documented classification) as indicators of the regulatory environment 

(i.e., effluent standards stringency) under which the plant operates. The decadal dummies account 

for technological differences (for example, older plants didn’t have access to technologies that 

were developed after their establishment). 

In the next section we present the results of the ordinary least squares (OLS) estimates of 

Equation (2):  

(2) 0ln( ) ln( )α α β ε= + + +∑ ∑i k ki m mi i
k m

TVC z x . 

In Equation (2), all the continuous variables described earlier are expressed in natural-log 

form, and ε i  stands for the statistical error. 
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4. Estimation Results 

We present in Table 4 the results of the estimated coefficients for Equation (2) under four 

specifications differentiated by the inclusion of control vectors. The coefficients are presented 

along with their standard errors. Each specification’s adjusted R-Square, and the Moran I test 

statistic for spatial autocorrelation are also presented.  

Table 4 about here 

Similar to previous studies in this field, our results demonstrate that the sample’s cost 

function is characterized by economies of scale (Fraas and Munley, 1984; Schwarz and 

McConnell, 1993). This could be realized based on the elasticity of costs with respect to the plant’s 

capacity, which is positive and lower than 1. The estimated coefficient for the investment variable 

shows similar sign and magnitude of the elasticity with respect to size, which suggests that 

operating costs also are characterized by scale economies with respect to other capital, which is 

beyond the correlation with the size of the plant. Volume treated, once capacity is controlled for, 

doesn’t have a statistically significant effect on costs. The estimated coefficient of the tenure 

variable indicates the expected sign, suggesting that older plants would be more expensive to run. 

Yet, this effect is only statistically significant when decadal dummy controls are included in the 

estimation. With respect to quality, our results indicate that the contamination level of the 

incoming flow (to the plant) is the important factor affecting the costs of treatment.  

Moving onwards to discuss the impact of climate change on treatment costs, it is important 

to emphasize again that the variables used are the historical average temperature and intra-annual 

variance in temperature (normal), and the ratios between the sample-year-observed-weather for 

the same variables and their historical counterparts. This means that the respective coefficients 

should be used correctly in the interpretation of results. That is, the effect of past average 

temperature (intra-annual variance in temperature) actually equals the difference 
av av

pst rat
tmp tmpβ β−  (

var var

pst rat
tmp tmpβ β− ). Whereas 

av

rat
tmpβ  and 

var

rat
tmpβ  correspond to the effects of the sample year observed 

values of average temperature, and the variance in temperature within-year, respectively.6 

                                                           
6 The statistical significance of the difference coefficient is determined based on a test performed after the estimation. 
Results of these tests correspond to the significance level derived from the coefficients and standard errors of 

av

pst
tmpβ  

and 
var

pst
tmpβ , reported in Table 4, for average temperature and intra-annual variance, respectively.  
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Our choice of including temperatures alone is justified in several ways: First, based on the 

strong biological connection between temperature and treatment efficiency as presented in the 

scientific literature review provided earlier. Second, given the current conditions of the wastewater 

collection systems in China (Jiang and Hellegers, 2016), the precipitation effects discussed in the 

same literature review are less likely to occur. Third, the strong relationship between temperature 

and precipitation patterns in our sample (Figure 1) introduces multicollinearity when both types of 

variables are included in the model.  

The estimation results support our earlier hypothesis. Historical within-year variance in 

temperatures has a negative and statistically significant coefficient at the 1 percent level. This 

implies that a plant designed to operate under higher past temperature variance (keeping, among 

all other variables, the observed within-year variance constant) is cheaper to run in 2006—the year 

of the sample. The coefficient for the sample year’s intra-annual variance in temperature is positive 

and also significant at the 1 percent level. This corresponds to the effects of weather extremes that 

are beyond the designed capacity of the plant. The interpretation is that the operating cost of a 

treatment plant that at the time of its establishment experienced a 10 percent higher within-year 

temperature variance than the sample average, is lower by 18.4 percent (according to the 

coefficient in column A of Table 4). Whereas an increase of 10 percent in observed within-year 

variance of a plant leads to an increase of almost 22 percent (column A in Table 4) in variable 

costs. Coefficients of average temperatures (observed in 2006, and historical normal) are not 

statistically significant but do have intuitive signs.  

Regarding treatment technologies, some findings from previous studies (Niu et al., 2016), 

on which we reported earlier, are also partially supported by our results (i.e., cheaper operations 

when using AO treatment technology). However, as a general conclusion and in-line with the 

existing literature, we cannot point to a specific technology as being cost preferred over another.7  

Our attempt to control for economic development or standards stringency through the 

inclusion of provinces’ dummy indicators did not yield meaningful results. This is due to high 

multicollinearity between provinces and climate, which also influences the latter’s statistical 

                                                           
7 The only consistently significant coefficient in our results belongs to the group of plants defined “Not Specified.” 
This group consists of two plants whose reported technology specification made it impossible to assign to any of the 
other technology groups. We also estimated the model without these two observations, this experiment didn’t yield 
any significant improvements to the reported results.  
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significance. As can be found in Lin et al. (2015), provinces are almost completely homogenous 

in climate attributes, and are divided almost exclusively between China’s climate zones (Lin et al., 

2015, Figure 1). 

Next, we address several important econometric issues. First, we find our estimation results 

robust to the introduction of sampling weights as calculated based on differences presented in 

Table 2. With respect to the choice of functional form, while we chose the constant elasticity form 

to represent the technology based on common practice in the field, other alternatives should also 

be considered. Using the Ramsey (RESET) specification-error test (Ramsey, 1969), we couldn’t 

exclude either the linear form or the log-linear form as compatible models. Nevertheless, we find 

that the results from all three functional form models are qualitatively non-distinguishable. We 

also test our model for endogeneity with respect to the concentration of BOD in effluents, which 

can be thought of being subject to managerial decisions. The results of these tests could not reject 

the null hypothesis that this variable is exogenous. The Moran I test for the existence of spatial 

autocorrelation in error terms is mostly rejected, except for one specification. For that specification 

(Column C in Table 4), coefficients are estimated using a maximum likelihood procedure. 

However, the results of that estimation, as presented in Table 4, do not differ significantly from 

the alternative specifications.8 Lastly, we perform several robustness checks to our model (not 

reported). These include replacing average temperature with minimum and maximum temperature 

variables, controlling for larger climatic regions instead of provinces, and inclusion of the different 

combinations of control vectors (i.e., decadal dummies, provincial dummies and climatic regions 

dummies) in different functional form specifications—as those are described in Appendix Table 

A.1.9   

In the next section we demonstrate the use of the estimated WWTP cost function through 

several simulations of different policy scenarios under various climate change predictions, 

utilizing the estimated coefficients presented in Table 4.  

5. Simulations of Future Policy Impacts 

                                                           
8 The detailed results of these different tests and model specifications are presented in Appendix A. 
9 The results from these robustness checks did not yield significantly different results to the ones presented herein and 
are therefore not presented for the sake of brevity, but are available from the authors upon request. 
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We start this simulation exercise with a short discussion of possible future scenarios and 

projections of important factors to be considered in the analyses. First, with respect to future policy 

scenarios, given the literature reviewed, and specifically with respect to the Chinese case analyzed 

earlier, we choose to focus on treated wastewater discharge standards as the future policy 

intervention. Over time, and as wastewater reuse becomes more widespread, one can observe 

increased levels of regulatory policies using more stringent quality standards for treated 

wastewater disposal (Zhou et al., 2018). Quality standards, especially one-quality-fits-all, are 

applied as the policy intervention to protect human health and the environment. The policy 

question that has been discussed in the literature addresses the tradeoff between increased cost of 

treatment and the level of stringency of the quality standards (Lavee, 2014; Jiang, Dinar and 

Hellegers, 2018). In the context of the China case, several works identified that quality standards 

for treated wastewater discharge should be amended, and that future policies should be designed 

to confront China’s growing water quality issues in general (Wang, 2011; Wang et al., 2015; Zhang 

Q. et al., 2016).  

Climate Predictions 

The simulation horizon starts in 2020 and ends in 2100, and is divided into three equal 27-year 

periods. For climate change predictions, we use projections from the Coupled Model Inter-

Comparison Project (CMIP5) database (Taylor, Stouffer and Meehl, 2012). Following previous 

literature that addresses climate change in China (Wang et al., 2009; Xu and Xu, 2012), and given 

potential sensitivity of simulation results to the use of predictions from a specific climate change 

model (Hui et al., 2018), we try to account for a wide range of future predictions in our analysis. 

For that purpose, we use projected climate from seven different global circulation models (GCMs) 

selected from the ensemble reviewed by Xu and Xu (2012). For each of the selected models, 

predictions of future climatic conditions are derived from three greenhouse gas emission scenarios, 

which are also known as representative concentration pathways (RCPs).10  

For all chosen GCMs, we have collected monthly near-surface temperature data from the 

CMIP5 database. We then computed, for each of the three future periods, 27-year average values 

                                                           
10 Xu and Xu (2012) actually considered 11 GCMs in their ensemble. We decided not to use the model FGOALS-s2 
(Bao et al., 2013), since it did not have predictions for RCP 2.6 and RCP 4.5. The other three GCMs we are not using 
predict that annual average temperatures will drop below their observed levels in our sample (in 2006), under all 
RCPs.  
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for the annual average and intra-annual variance in temperatures.11 As before, we fit the predicted 

climate variables for each observation in our sample using the IDW method.12 The temperature 

predictions for each model under all RCPs and for each of the future periods is presented in Table 

5. 

Table 5 about here 

According to Table 5, the models can be roughly grouped, based on their future predictions, 

to fit different temperature trajectories. In terms of annual average temperatures, one group of 

models (CanESM2, MIROC5, MIROC-ESM and MIROC-ESM-CHEM) is generally more 

expanding (i.e., predicts larger temperature increases) than the other more moderate group of 

models (BCC-CSM1, GISS-E2-R and MPI-ESM-LR). In terms of intra-annual variance in 

temperatures, most models are grouped together and present only small changes with respect to 

the base period. Whereas, two models predict moderate (MPI-ESM-LR) and sharp (GISS-E2-R) 

decrease in within-year variance. Models also can be distinguished by their future trends; however, 

such a distinction is much finer and depends on the RCP scenarios.  

Policy Scenarios 

As mentioned, we choose to focus on treated wastewater discharge standards as our policy 

scenario. In that respect and given the literature reviewed earlier, we simulate a homogeneous 

quality standard requiring all plants in our dataset to treat wastewater to Class 1A as defined by 

the national standard for treated wastewater discharge (GB 18918–2002). This policy implies a 

further reduction of at least 50, 67, and 83 percent in effluents’ BOD level for 49, 32, and 11 

percent of the WWTPs in our sample, respectively.13 As mentioned earlier, we aim to analyze a 

wide range of scenarios in this simulation exercise. This, in turn, will allow us to provide cautious 

estimates toward the usefulness of our approach. That is, estimating the opportunity costs 

associated with ignoring future climate change impacts on wastewater treatment. Since our 

simulation is conducted on future predictions, we also try to account for possible trends in other 

                                                           
11 We also collected monthly precipitation data and computed the same variables as we did for temperature. We use 
these computed variables to corroborate the assumption that the relationship presented in Figure 1 prevails also for 
the predicted future climate. Excluding MIROC-ESM and MIROC-ESM-CHEM climate predictions from all models 
support this assumption.  
12 Since the models selected have different resolutions and following common practice in this field (Xu and Xu, 2012; 
Zhang Y. et al., 2016), all GCMs data were uniformly interpolated to identical resolution (0.5°×0.5°) using bilinear 
interpolation prior to fitting the data to each observation in the sample. 
13 We assume that inflow quality to each plant remains at the observed level throughout the simulation exercise. 
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important variables, specifically wastewater volumes. Obviously, such future aspects introduce 

higher level of uncertainty, and predicted trajectories will be determined by a combination of 

multiple factors. We therefore concentrate on measurable factors and supporting literature in order 

to construct several meaningful scenarios. With respect to factors to be considered, wastewater 

volumes should be a function of domestic and industrial water consumptions, and the rates of 

sewage generated, collected, and conveyed to treatment facilities. 

Following the literature concerned with modelling future water consumption in China 

(Shalizi, 2008; Wang et al., 2018), we consider the following factors in constructing our scenarios: 

(a) population growth, (b) per-capita water consumption, and (c) urbanization rates. For population 

trajectories, we rely on the “high-variant” and “low-variant” scenarios taken from the population 

division of the United Nations (UN, 2017). Per-capita water consumption and urbanization rates 

are more elusive factors in terms of future predictions. We therefore assume for both, either linear 

trends of continuous growth, based on documented recent historical trends in China (Shalizi, 2008, 

for urbanization; and NBS, 2016, for per-capita water consumption), or no change at all, 

throughout the duration of the simulated horizon. Finally, the population connected to sewage 

systems and centralized treatment facilities in China is approximately 80 percent in urban areas, 

and far lower in rural ones (European Union Small and Medium-Sized Enterprise Centre 

[EUSME], 2013). Whether centralized or decentralized, treatment systems will be characterizing 

future development and, in turn, influencing these shares is still unknown (EUSME, 2013). We 

therefore assume either linear trends throughout the horizon or no change for this factor as well.  

Based on all possible combinations of the aforementioned factors, we construct multiple 

trajectories from which we picked six, representing a wide range of possible wastewater volume 

development paths. These trajectories are presented in Figure 3 and labeled V1 through V6. We 

also construct three policy scenarios, based on the future period in which our hypothetical treated 

wastewater discharge policy standards will be implemented (i.e., in the short, medium, or long 

term). We label these scenarios as P1, P2, and P3 for short-term, medium-term, and long-term 

implementation scenarios, respectively. We also notate as R1, R2, and R3 the three RCP scenarios, 

RCP 2.6, RCP 4.5, and RCP 8.5, respectively. Our seven GCMs are labeled G1 through G7 

according to their order of appearance in Table 5.  

Figure 3 about here 
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We conduct three separate simulations, and in each the set of relevant variables is adjusted 

to its projected values according to the scenarios described above. The treatment cost in each 

simulation is predicted based on the different estimated functions as they are prescribed in the 

following description. The first, labeled “Sim1,” is carried using the coefficients estimated in the 

previous section. Being conservative, we use the coefficients from Model B (Table 4, Column 3) 

accounting for provincial differences. For each combination of policy scenario (P0 through P3) 

and wastewater volume trajectory (V0 through V6), we simulate all combinations of GCMs and 

RCPs for each of the three future periods.14 For the second simulation (Sim2), we project impacts 

on costs of treatment from future policy scenarios and wastewater volume changes alone, keeping 

climate variables at their observed 2006 values. Similar to Sim2, in the third and final simulation 

(Sim3) we calculate only the impact of policy scenarios and volume projections’ combinations on 

the cost of treatment. However, for this last simulation we use a new set of coefficients. That is, 

we estimate the cost function model presented in Equation 2, however, dropping from the 

estimation the climate variables W .15 This set of coefficients is used to simulate the changes in 

costs when all possible climate impacts (direct and indirect) are ignored. 

Using results of all three simulations, the impact of future predictions with respect to 

climate change on treatment costs can be broken down into two parts. The first part, represented 

by the difference in treatment costs between Sim1 and Sim2 is the impact of predicted climate 

change alone (both use the same set of coefficients but differ in the values of climate variables 

used for predicting costs of treatment). Whereas, the difference in treatment costs between Sim2 

and Sim3 is attributed only to the inclusion of climate change in the estimation exercise (in both 

of these simulations, climate remains unchanged however different sets of coefficients are used 

for predicting treatment costs). It is measured by the cost impact derived from changes to the 

coefficients of the cost function determinants other than climate. These changes, in turn, are the 

result of including the climate variables in the estimation. 

Under all three simulations, we compute the O&M costs, P
kθ , for each plant k  in our 

sample ( { }1,...,163=k ). Based on that calculation, we can also compute the average treatment 

                                                           
14 P0 and V0 are the scenarios in which volume and discharge standards remain at their base-year observed levels 
throughout the duration of the simulated period. 
15 The results of this estimation procedure are reported in Appendix A.  
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cost per unit of water treated at the plant level ( P
kµ ), and the total annual O&M costs for the entire 

sample, Sθ  (where S P
k

k
θ θ= ∑  ). For both cost measures, we compute average ( Pθ , Pµ ), min (

min
Pθ , min

Pµ ), and max ( max
Pθ , max

Pµ ) values for the sample. 

Simulation Results 

We turn now to describe the results of our simulation analysis. First, we report the results from 

Sim1, which is the total predicted effect of climate change on treatment costs. Table 6 presents the 

predicted levels of Sθ , Pθ  and Pµ , in present value terms, for all RCPs and for each of the GCMs, 

averaged over policy and volume change scenarios. The discount rate for calculation of present 

values is assumed to be 3 percent.16  

Table 6 about here 

It can be seen from Table 6 that for most models and for different RCP scenarios, costs of 

treatment are expected to increase as a result of climate change. The reason is the positive and 

relatively large values of estimated coefficient for the change with respect to past climate of the 

intra-annual temperature variation (Table 4, Row 10). According to most models, that variable is 

predicted to increase over time (Table 5). The exceptions are models G3 and G7, which, as noted 

earlier, predict a decrease in the within-year variation in temperatures compared to the historical 

climate. According to Table 6, the impacts on total annual costs over the sample range between an 

increase of 19 percent and a decrease of 75 percent, at the extremes. The changes predicted in 

annual O&M costs for the average plant in the sample are the same. Average costs for a unit of 

water treated ranges according to the simulated predictions between a 46 percent increase and 75 

percent decrease. As the predicted changes in climate generally expand with time, the use of lower 

discount rate magnifies these outcomes such that costs are expected to increase with respect to the 

base year under all models except G3. The changes in total annual costs over the sample and for 

an average plant, based on the lower discount rate calculations, are within 156 percent increase to 

a decrease of 45 percent. Average cost for treated unit of water ranges between a 229 percent 

increase and 41 percent decrease. Using a higher discount rate reverses the relationship such that 

                                                           
16 Based on the literature discussion regarding discount rate in Nordhaus (2007), we also use discount rates of 1.4 and 
5.5 percent. For brevity purposes, we only present results from these computations in a summary form. We refer the 
interested reader to the supplemental material attached to this paper for the detailed reports.  
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costs under all models and RCP scenarios decrease with respect to the base year. Total and average 

annual O&M costs changes range between a decrease of 55 to 91 percent. Average cost per unit 

of water treated also decreases in the range of 47 to 91 percent. 

Table 7 reports, for the various cost measures, the differences between Sim2 and Sim3 as 

well as differences between Sim1 to Sim3, on average, across all models and scenarios. The ratio 

of these two differences, which is also reported in Table 7, can be interpreted as an estimate of the 

opportunity costs associated with ignoring climate change impacts on treatment costs. As noted 

earlier, it is the share of cost impact derived from changes to all other coefficients in the estimated 

cost function (except for the climate coefficients), when climate variables are also included in it, 

and while keeping climate unchanged with respect to the observed values in the 2006 sample-year. 

When in the range of 0 to 100, a higher ratio indicates a better prediction of the opportunity cost 

simulated by the impact of climate. A ratio outside of that range indicates a poor prediction of the 

simulated impact of climate, where it is either an overestimation (ratio over 100) or suggests an 

estimate in the opposite direction (negative ratio) of the projected impact. 

Table 7 about here 

The ratios presented in Table 7 suggest that for an average plant in the sample (and for the 

entire sample), 46 percent of the impact on annual O&M costs predicted by Sim1 with respect to 

Sim3 is attributed to all other factors considered in the estimation except climate. As explained 

above, this partial impact is manifested through changes in estimated coefficients resulting solely 

from the inclusion of climate variables in the estimation procedure. For the average treatment cost 

per unit of water, Pµ , the ratio is 33 percent, suggesting a slightly lower predicted impact of that 

opportunity costs estimate. On average, the cheapest plant in terms of both annual and per unit of 

treated water O&M costs appears almost unaffected by climate change. This means that the 

inclusion of climate variables in the estimation attributes an increase in costs (i.e., the difference 

between Sim1 to Sim2), which disappears (and even reverses) when climate effects themselves 

are accounted for (i.e., the difference between Sim1 to Sim3). The highest impacts predicted by 

climate change simulation across our sample seem to be only weakly or moderately explained by 

the inclusion of climate variables in the estimation alone. 
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Table 8 presents the same ratio presented in Table 7 across the range of GCMs and RCPs. 

Given that calculation of the ratio of differences in annual O&M costs is identical for an average 

plant and for the total annual costs over the entire sample, we report henceforth just on the former. 

Table 8 about here 

According to Table 8, the portion of climate change effects on wastewater treatment costs, 

which is associated with inclusion of climate variables in the estimation, ranges between 23 to 41 

percent, and from 17 to 25 percent for the annual O&M costs of an average plant, and for average 

cost of unit of water treated, respectively. The exceptions are the G3 and G7 models, in which the 

cost impact predictions based on that ratio are either overestimated or in the opposite direction of 

the simulated impact resulting from the models’ projections. The ranges for these ratios when 

calculated based on high (low) discount rate are 21 to 41 (24 to 42) percent, and 15 to 24 (18 to 

25) percent, for Pθ  and Pµ , respectively. 

Turning to examine variation in the results from a different perspective, Table 9 presents 

the same ratio between differences in costs across volume and policy scenarios. 

Table 9 about here 

Looking across volume and policy scenarios, the share of annual O&M costs’ impact from 

climate change associated with the estimation alone ranges between -128 and 37 percent. In the 

majority of scenarios, the simulated impact from climate change and the opportunity cost estimates 

are predicted to have opposite signs. For the average cost of unit of water treated, that ratio ranges 

between 45 and 122 percent—with most scenarios predicting a lower ratio than 100 percent. 

Calculating the variation of ratios using high (low) discount rate, we find that Pθ  ranges between 

-19 to 43 (-214 to 2,872) percent, and Pµ  ranges between 51 to 291 (42 to 192) percent, 

respectively. 

To summarize, the results of the simulation analysis suggest that climate change impacts 

on wastewater treatment costs can be substantial. The estimate we calculated for the opportunity 

cost associated with ignoring these potential effects is also quite significant. Depending on 

assumed discount rate, we find that variation of the opportunity costs estimate among policy 

implementation scenarios, given uncertain future development, could be substantial as well. Yet, 

depending on predicted changes in climate from different GCMs, in some cases climate effects 
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will decrease or even reverse the predicted impacts resulting from the educated estimation alone. 

For the former, the cost of ignoring climate change might be negligible. These cases, however, are 

the minority according to the results of our analysis.  

6. Conclusions and Policy Implications 

The following balance is obvious. A higher number of wealthy people living in urban areas results 

in increased pressure on water resources and the environment. On the one hand this means an 

increased demand for water and higher level of sewage generation that necessitates treatment to 

reduce health risks and environmental damage. On the other hand, treated municipal wastewater 

is a source of stable and good-quality water supply. However, the benefits of that additional, 

reliable source of water is affected by the wastewater collection, treatment, and disposal, which 

are all capital- and energy-intensive processes. This makes treatment necessity an expensive social 

dilemma that must be addressed by proper public policy. The result of such a dilemma, which is 

associated with public budget tradeoff, is that the majority of developing countries still do not treat 

wastewater, whereas countries in the developed world face, at different magnitudes, challenges 

associated with economic efficiency of the treatment investments and disposal of wastewater sub-

quality.  

Uncertainty in future climate only intensifies this dilemma. The impacts associated with 

climate change may have contradicting effects on the social costs of wastewater treatment. While 

reoccurring droughts, dry and warm conditions encourage the potential use of treated wastewater 

as a substitute to natural fresh water for beneficial uses, higher frequency of extreme climate-

related events, such as floods, cold or hot weather might impair the efficiency of the treatment 

process, making it much more expensive and less effective. Being within the public good domain 

(or public bad, as stated by Feinerman, Plessner and Eshel, 2001), wastewater-related activities are 

usually characterized by some level of centrality, making them more susceptible to policy 

interventions. However, in order to conduct the social cost-benefit analysis the climate-related 

potential impacts must be quantified. The current paper therefore takes a first step toward a better 

understanding of the impact of climate change on actual operating costs of wastewater treatment 

and, ultimately, on the ability of societies to cope with increased water scarcity and water quality 

risks.  
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We estimate an average cost function for a cross section sample of the wastewater treatment 

sector in China, and we use the estimated coefficients to simulate impacts of future climate changes 

on the costs of treatment. While relatively simplistic, our analysis offers some important insights. 

The econometric estimation results corroborate our a priori assumption regarding climate effect. 

That is, materialized extremes that lie outside of the distribution of climate measures observed at 

the time the WWTP was designed are estimated to significantly alter the cost of treatment. 

Therefore, climate must be accounted for when wastewater treatment processes are designed, and 

their costs and performances are studied. The simulation analysis points to three noteworthy results 

and their derived conclusions. First, based on most climate predictions used in the analysis, costs 

of wastewater treatment are expected to rise with the effect diminishing and even reversed as 

assumed discount rates increase. This, in turn, demonstrates the importance of quantifying 

uncertainty and measuring the magnitude of its impact, which in our case is quite large. Second, 

keeping climate stationary, our estimate of the opportunity costs associated with ignorance of these 

potential impacts can be fairly significant, emphasizing our earlier conclusion regarding the 

inclusion of climate in future analyses. Third, when comparing across policies, ignoring climate 

change impacts on future planning of wastewater treatment could have different estimated 

opportunity costs, suggesting that information on future climate change impact could be critical 

for efficient policy design. 

Finally, our analysis can benefit from several future extensions. First, increasing the sample 

size, spatially and temporally, provides the opportunity to identify and statistically interpret each 

of the individual effects we studied in a more robust manner. Second, as suggested in relevant 

literature (e.g., McConnell and Schwarz, 1992; Schwarz and McConnell, 1993; Fernandez, 1997), 

some variables within the wastewater treatment domain might be endogenous and determined by 

some type of equilibrium process. This suggests that a structural approach could be relevant, which 

can either corroborate or reject the underlying theory. Another strand of the literature in this field 

is focused on measuring relative performances and using it to identify factors that can contribute 

to efficiency gains (Hernández-Sancho and Sala-Garrido, 2009; Hernández-Sancho, Molinos-

Senante and Sala-Garrido, 2011b; Molinos-Senante, Hernández-Sancho and Sala-Garrido, 2015; 

Molinos-Senante, Sala-Garrido and Lafuente, 2015). Both of these approaches could generate 

important insights to the social dilemma we analyzed, but would require a larger dataset, including 

a wider range of observations and control variables, than the data used in our study.  
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Figure 1. Relationship Between Historical Climate Variables in the Dataset 

 
Figure 2. Temporal Variation in Climate Variables in the Sample 
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Figure 3. Future trajectories of wastewater flows (index, 2020=100). 

Table 1. Descriptive Statistics of the Cost Model Variables 

Variable Units Mean Std. Dev. Min Max 

Dependent Variable      

O&M Costs  Million $ 1.95 1.46 0.15 8.24 

Explanatory Variables      

Investment  Million $ 28.75 26.37 1.86 139.41 

Volume Treated  104 × m3/day 6.46 6.32 0.21 40.00 

Treatment Capacity 104 × m3/day 7.54 7.04 0.60 40.00 

Tenure (years since establishment) Years 8.77 6.47 1.00 50.00 

BOD Influent mg/L 169.99 89.00 17.99 480.00 

BOD Effluent mg/L 13.40 8.34 1.20 60.00 
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Table 2. Shares of Treatment Processes by Number of Treatment Plants, and Total 

Designed Capacity in the Sample and the Entire Sector (percent) 

Treatment 

Process 

Number of WWTPs Designed Capacity 

Sample 
(2006) 

Jin, Zhang 
and Tian 
(2014) 

Zhang Q. 
et al. 

(2016) 

Sample 
(2006) 

Jin, Zhang 
and Tian 
(2014) 

Zhang Q. 
et al. 

(2016) 

AAO 12 25 31 17 33 21 

Chemical and 

Physicochemical 

3 1 3 3 2 3 

AO 6 6 8 4 8 5 

Biological Film 3 2 4 2 1 6 

AS 15 9 11 21 4 15 

SBR 10 17 10 8 10 11 

Oxidation Ditch 40 29 21 35 28 25 

Others 11 11 12 10 14 14 

 

Table 3. Descriptive Statistics of Climate Variables 

  Historical Climate Observed Weather  

 Units Mean Std. Dev. Mean Std. Dev. 

Temperature      

Annual Average C° 14.28 3.41 15.31 3.40 

Intra Annual Variance (C°)2 87.67 36.54 85.89 35.76 

Precipitation      

Annual Average mm 975.78 387.05 901.32 426.39 

Intra Annual Variance (mm)2 5390.59 3746.01 4337.57 3880.45 
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Table 4. Estimated Coefficients for O&M Cost Equation under Different Specifications 

Variable\Model A B C D 

Investment ( Iβ ) 0.267 
(0.068) 

0.159 
(0.070) 

0.290 
(0.070) 

0.182 
(0.072) 

Capacity ( Cβ ) 0.566 
(0.166) 

0.714 
(0.166) 

0.493 
(0.173) 

0.657 
(0.170) 

Volume ( Vβ ) -0.095 
(0.149) 

-0.127 
(0.144) 

-0.076 
(0.150) 

-0.115 
(0.145) 

Tenure ( Yβ ) 0.079 
(0.084) 

0.040 
(0.126) 

0.301 
(0.149) 

0.221 
(0.171) 

Quality Parameters     

BOD Influent (
InQβ ) 0.167 

(0.077) 
0.168 

(0.079) 
0.168 

(0.079) 
0.171 

(0.080) 

BOD Effluent (
OutQβ ) -0.030 

(0.063) 
-0.036 
(0.065) 

-0.03 
(0.063) 

-0.036 
(0.065) 

Climate Indicators     

Hist. Mean Temp. (
av

pst
tmpβ ) 0.091 

(0.224) 
0.395 

(0.450) 
0.061 

(0.224) 
0.451 

(0.450) 

Hist. Intra-Ann. Temp. Var. (
var

pst
tmpβ ) 0.376 

(0.135) 
0.054 

(0.439) 
0.366 

(0.135) 
0.306 

(0.465) 

Mean Temp. Ratio (
av

rat
tmpβ ) -0.753 

(1.445) 
0.538 

(3.678) 
-0.881 
(1.455) 

-0.497 
(4.094) 

Intra-Ann. Temp Var. Ratio (
var

rat
tmpβ ) 2.190 

(0.817) 
3.167 

(2.756) 
2.423 

(0.836) 
2.052 

(2.885) 
Treatment Technologies ( βT )   

Chemical and Physicochemical -0.349 
(0.148) 

-0.247 
(0.174) 

-0.362 
(0.149) 

-0.235 
(0.176) 

AAO -0.156 
(0.148) 

0.012 
(0.160) 

-0.175 
(0.153) 

-0.001 
(0.161) 

AO -0.314 
(0.191) 

-0.047 
(0.195) 

-0.353 
(0.192) 

-0.077 
(0.195) 

Biological Filter -0.278 
(0.240) 

-0.208 
(0.261) 

-0.304 
(0.242) 

-0.209 
(0.262) 

SBR 0.021 
(0.160) 

0.073 
(0.173) 

0.016 
(0.163) 

0.073 
(0.173) 
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Oxidation Ditch -0.122 
(0.118) 

0.032 
(0.132) 

-0.137 
(0.125) 

0.024 
(0.139) 

Not Specified -1.292 
(0.363) 

-1.301 
(0.357) 

-1.352 
(0.370) 

-1.290 
(0.366) 

Constant Term -3.778 
(1.099) 

-2.453 
(2.779) 

-4.827 
(1.332) 

-4.412 
(3.107) 

Control Vectors    

Province ( P ) No Yes No Yes 

Decade ( D ) No No Yes Yes 

Adjusted R2 0.659 0.714 0.660 0.718 

Moran I  1.710 0.310 2.960 1.070 

Notes: Standard errors are reported in parenthesis. The coefficients presented under column 3 (C) are 
based on a maximum likelihood estimation of a spatial autoregressive procedure. 
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Table 5. Temperature Predictions by Climate Model, Emission Scenario and Future Period 

Variable Annual Average (C°) Intra-Annual Variance (C°)2 

Period and Model RCP 2.6 RCP 4.5 RCP 8.5 RCP 2.6 RCP 4.5 RCP 8.5 

Base (2006) 14.32 87.25 

BCC-CSM1 14.53 14.61 14.92 88.54 92.44 87.52 

CanESM2 16.14 16.11 16.36 86.01 87.27 85.49 

GISS-E2-R 15.22 15.37 15.69 60.83 60.95 58.61 

MIROC5 16.35 16.37 16.61 95.39 96.27 95.31 

MIROC-ESM 16.33 16.13 16.51 90.15 91.56 90.67 

MIROC-ESM-CHEM 16.47 16.03 16.55 94.07 94.23 92.96 

MPI-ESM-LR 15.19 15.24 15.35 78.48 80.12 81.63 

Average (2020-2046) 15.75 15.69 16.00 84.78 86.12 84.60 

BCC-CSM1 14.77 15.18 16.10 90.35 89.96 90.20 

CanESM2 16.42 16.92 17.85 85.39 88.11 88.27 

GISS-E2-R 15.17 15.83 16.62 59.47 59.43 59.21 

MIROC5 17.09 17.43 18.27 97.17 95.26 95.49 

MIROC-ESM 16.72 17.45 18.55 93.60 93.27 91.79 

MIROC-ESM-CHEM 16.72 17.21 18.42 92.25 95.18 91.24 

MPI-ESM-LR 15.16 15.69 16.84 78.77 79.91 76.92 

Average (2047-2073) 16.01 16.53 17.52 85.29 85.87 84.73 

BCC-CSM1 14.63 15.44 17.57 91.31 89.68 93.77 

CanESM2 16.29 17.37 19.56 87.49 86.78 91.73 

GISS-E2-R 14.92 15.82 17.73 60.06 62.03 57.37 

MIROC5 17.15 17.89 19.66 96.45 97.03 95.31 

MIROC-ESM 16.85 17.80 20.78 94.83 94.73 90.92 

MIROC-ESM-CHEM 16.62 17.69 20.74 97.04 94.32 91.25 

MPI-ESM-LR 14.98 16.04 18.38 78.65 77.38 77.71 

Average (2074-2100) 15.92 16.86 19.20 86.55 85.99 85.44 
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Table 6. Simulated Future Climate Change Impacts on Wastewater Treatment Costs  

Variables 
Annual O&M Costs (Million $)             Per Unit of Wastewater 

Treated O&M Cost ($/m3)  

Entire Sample ( Sθ ) 
___________________  

Average Plant ( Pθ ) 
__________________  

Average Plant ( Pµ ) 
___________________  

 R1 R2 R3 R1 R2 R3 R1 R2 R3 

Base 302.031 1.853 0.106 

G1 329.362 358.274 339.455 2.021 2.198 2.083 0.143 0.155 0.147 

G2 281.974 300.643 305.689 1.730 1.844 1.875 0.128 0.137 0.141 

G3 81.056 82.476 75.737 0.497 0.506 0.465 0.029 0.030 0.027 

G4 349.028 350.360 351.665 2.141 2.149 2.157 0.127 0.128 0.129 

G5 313.543 323.116 315.857 1.924 1.982 1.938 0.133 0.137 0.131 

G6 333.101 339.844 327.530 2.044 2.085 2.009 0.135 0.138 0.132 

G7 176.581 186.171 194.034 1.083 1.142 1.190 0.069 0.072 0.076 

 

Table 7. Differences in Calculated Cost Measures between Scenarios  

Variables 

Annual O&M Costs (Million $) 
Per Unit of Wastewater Treated 

O&M Cost ($/m3) 

Entire 
Sample

( Sθ ) 

Average 
Plant     
( Pθ ) 

Cheapest 
Plant       
( min

Pθ ) 

Most 
Expensive 

Plant        
( max

Pθ ) 

Average 
Plant     
( Pµ ) 

Cheapest 
Plant       
( min

Pµ ) 

Most 
Expensive 

Plant         
( max

Pµ ) 

Sim2 - Sim3 36.999 0.227 0.025 1.287 0.015 0.002 0.057 

Sim1 - Sim3 80.032 0.491 -0.006 4.585 0.044 -0.003 1.336 

Ratio 
(percent) 

46 46 -407 28 33 -94 4 

Notes: Figures in the tables are rounded to the third decimal, whereas the ratios presented are based on the actual 
numbers. 
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Table 8. Ratio of Differences in Calculated Annual Operating and Maintenance Costs 

between Simulations by Climate Models and Emission Scenarios  

Variable 
Annual O&M Costs for an Average 

Plant ( Pθ )    

Per Unit of Wastewater Treated O&M 

Costs in an Average Plant ( Pµ )  

GCM/RCP R1 R2 R3 R1 R2 R3 

G1 27 23 26 19 17 19 

G2 41 34 33 25 21 20 

G3 -35 -36 -34 -41 -41 -39 

G4 24 24 24 25 24 24 

G5 31 29 30 22 21 23 

G6 27 25 28 22 21 23 

G7 -306 -1496 840 665 266 165 

 

Table 9. Ratio of Differences in Calculated Annual Operating and Maintenance Costs 

Between Simulations by Volume and Policy Scenarios 

Variable 
Annual O&M Costs for an Average 

Plant ( Pθ )  

Per Unit of Wastewater Treated O&M 

Costs in an Average Plant ( Pµ )  

GCM/RCP P0 P1 P2 P3 P0 P1 P2 P3 

V0 -30 -21 -27 -29 54 56 54 54 

V1 29 37 33 30 107 122 110 108 

V2 -7 -1 -5 -6 63 66 64 63 

V3 -28 -20 -26 -28 55 57 56 56 

V4 -55 -43 -51 -53 50 51 50 50 

V5 -23 -16 -21 -23 52 53 52 52 

V6 -128 -98 -120 -125 45 46 45 45 
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Appendix A. Different Cost Treatment Model Specifications 

We describe in this Appendix the outcomes of different specifications for the cost function 

estimation procedure. In Appendix Table A.1 we present the results of several alternative 

functional forms for the underlying technology. Appendix Table A.2 shows the outcomes of 

estimating the model while accounting for sampling weights based on different calculations. In 

Appendix Table A.3 we report the second stage results from an instrumental variable estimation 

procedure performed to test for endogeneity of the level of BOD in effluents, along with the tests’ 

statistics. The instrumental variables used for these estimations are the level of COD and TSS in 

the plant’s effluents. Table A.4 reports the results of estimating the cost function in a Cobb-

Douglas form, excluding climate variables. The coefficients from that estimation are the ones used 

in the simulation exercise for Sim3. All the results presented in the tables below are based on 

estimations that do not include any fixed effects, and therefore should be compared against Column 

A in Table 4. The exception is Appendix Table A.4, in which provincial dummies are used, and 

so the coefficients from that table should be compared to Column B of Table 4. We do not report 

the coefficients for treatment technologies in the tables below for brevity considerations. 

In Appendix Table A.1, columns (1) through (5) correspond to the following functional forms: 
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Appendix Table A.1. Different Functional Form Specifications  

Variable\ Model (1) (2) (3) (4) (5) 

Investment ( Iβ ) 0.518 
(0.133) 

0.006 
(0.003) 

0.011 
(0.005) 

0.273 
(0.069) 

0.287 
(0.070) 

Capacity ( Cβ ) 1.168 
(0.327) 

0.056 
(0.026) 

0.199 
(0.039) 

0.523 
(0.166) 

0.504 
(0.169) 

Volume ( Vβ ) -0.276 
(0.293) 

-0.004 
(0.028) 

-0.078 
(0.042) 

-0.050 
(0.149) 

-0.034 
(0.150) 

Tenure ( Yβ ) -0.231 
(0.166) 

0.009 
(0.009) 

-0.014 
(0.013) 

0.120 
(0.083) 

0.002 
(0.007) 

Quality Parameters      

BOD Influent (
InQβ ) 0.313 

(0.152) 
0.001 

(0.001) 
0.001 

(0.001) 
0.170 

(0.078) 
0.186 

(0.078) 

BOD Effluent (
OutQβ ) -0.147 

(0.124) 
0.001 

(0.007) 
-0.003 
(0.010) 

-0.014 
(0.063) 

-0.023 
(0.063) 

Climate Indicators      

Hist. Mean Temp. (
av

pst
tmpβ ) -0.485 

(0.441) 
0.008 

(0.030) 
-0.017 
(0.045) 

0.004 
(0.026) 

0.002 
(0.026) 

Hist. Intra-Ann. Temp. Var. (
var

pst
tmpβ ) 0.053 

(0.265) 
0.006 

(0.003) 
0.003 

(0.004) 
0.004 

(0.002) 
0.004 

(0.002) 

Mean Temp. Ratio (
av

rat
tmpβ ) -0.128 

(2.845) 
-1.517 
(1.446) 

-1.279 
(2.132) 

-0.765 
(1.201) 

-0.53 
(1.207) 

Intra-Ann. Temp Var. Ratio (
var

rat
tmpβ ) 1.620 

(1.609) 
1.798 

(0.905) 
2.031 

(1.335) 
2.782 

(0.814) 
2.305 

(0.771) 

Constant Term -0.190 
(2.164) 

-1.044 
(2.190) 

0.425 
(3.230) 

-4.438 
(1.891) 

-4.035 
(1.883) 

Adjusted R2 0.599 0.506 0.675 0.650 0.646 

Ramsey (3,142) 16.099 12.231 1.150 1.879 1.751 

Notes: Values in parenthesis are estimated standard errors.  
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Appendix Table A.2. Cost Function Estimation Results Using Different Sampling Weights  

Variable\ Model  (1)a,c (2)b,c (3)a,d (4)b,d 

Investment ( Iβ ) 0.231 
(0.081) 

0.275 
(0.066) 

0.259 
(0.066) 

0.232 
(0.083) 

Capacity ( Cβ ) 0.481 
(0.224) 

0.464 
(0.201) 

0.497 
(0.19) 

0.486 
(0.214) 

Volume ( Vβ ) -0.022 
(0.200) 

-0.040 
(0.181) 

-0.054 
(0.172) 

-0.066 
(0.192) 

Tenure ( Yβ ) 0.042 
(0.118) 

0.046 
(0.107) 

0.095 
(0.109) 

0.102 
(0.132) 

Quality Parameters     

BOD Influent (
InQβ ) 0.097 

(0.115) 
0.119 

(0.105) 
0.139 

(0.105) 
0.108 

(0.119) 

BOD Effluent (
OutQβ ) -0.015 

(0.064) 
-0.015 
(0.058) 

-0.039 
(0.051) 

-0.035 
(0.061) 

Climate Indicators     

Hist. Mean Temp. (
av

pst
tmpβ ) 0.120 

(0.200) 
0.103 

(0.196) 
0.173 

(0.194) 
0.137 

(0.242) 

Hist. Intra-Ann. Temp. Var. (
var

pst
tmpβ ) 0.456 

(0.099) 
0.401 

(0.092) 
0.471 

(0.105) 
0.459 

(0.109) 

Mean Temp. Ratio (
av

rat
tmpβ ) -0.149 

(1.415) 
-0.005 
(1.469) 

-0.257 
(1.168) 

0.171 
(1.715) 

Intra-Ann. Temp Var. Ratio (
var

rat
tmpβ ) 2.326 

(1.29) 
2.436 

(1.134) 
1.907 

(1.055) 
2.650 

(1.183) 

Constant Term -3.693 
(0.773) 

-3.609 
(0.757) 

-4.251 
(0.748) 

-3.851 
(0.905) 

Adjusted R2 0.649 0.650 0.685 0.634 

Notes: Values in parenthesis are estimated standard errors.  

a Calculation of weights is based on information from Zhang Q. et al. (2016).  
b Calculation of weights is based on information from Jin, Zhang and Tian (2014). 
c Calculation of weights is based on number of represented plants in the industry. 
d Calculation of weights is based on the share of treatment technologies in total capacity of the industry.  
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Appendix Table A.3. Instrumental Variables Regression for Identifying Endogeneity, 

Different Estimation Methods.  

Variable\ Model 2SLS GMM 

Investment ( Iβ ) 0.265 
(0.066) 

0.267 
(0.058) 

Capacity ( Cβ ) 0.564 
(0.158) 

0.557 
(0.168) 

Volume ( Vβ ) -0.091 
(0.142) 

-0.085 
(0.159) 

Tenure ( Yβ ) 0.076 
(0.081) 

0.073 
(0.095) 

Quality Parameters   

BOD Influent (
InQβ ) 0.173 

(0.081) 
0.175 

(0.098) 

BOD Effluent (
OutQβ ) -0.049 

(0.129) 
-0.048 
(0.115) 

Climate Indicators   

Hist. Mean Temp. (
av

pst
tmpβ ) 0.088 

(0.212) 
0.087 

(0.165) 

Hist. Intra-Ann. Temp. Var. (
var

pst
tmpβ ) 0.383 

(0.133) 
0.379 

(0.099) 

Mean Temp. Ratio (
av

rat
tmpβ ) -0.728 

(1.371) 
-0.714 
(1.017) 

Intra-Ann. Temp Var. Ratio (
var

rat
tmpβ ) 2.174 

(0.777) 
2.175 

(0.953) 

Constant Term -3.769 
(1.039) 

-3.762 
(0.694) 

Endogeneity Test (H0: Variable is Exogenous)    

Durbin score (2SLS)/GMM C (GMM): 2(1)χ   0.029 0.034 
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Wu-Hausman (2SLS): F(1,144) 0.025  

Overidentification (H0: No Overidentification)    

Sargan score (2SLS)/ Hansen's J (GMM): 2(1)χ   0.020 0.029 

Basmann (2SLS): 2 (1)χ  0.017  

Adjusted R2 0.659 0.659 

Notes: Values in parenthesis are estimated standard errors. 

Appendix Table A.4. Constant Elasticity Functional Form Without Climate Variables 

(used for Sim3).  

Variable\ Model Coefficients  

Investment ( Iβ ) 0.148 
(0.068) 

Capacity ( Cβ ) 0.715 
(0.164) 

Volume ( Vβ ) -0.109 
(0.143) 

Tenure ( Yβ ) -0.063 
(0.079) 

Quality Parameters  

BOD Influent (
InQβ ) 0.177 

(0.078) 

BOD Effluent (
OutQβ ) -0.044 

(0.063) 

Constant Term -1.348 
(0.565) 

Adjusted R2 0.714 

Notes: Values in parenthesis are estimated standard errors. 
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