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1. Introduction 

Climate change has been the subject of much research in agriculture (Lobell, Cahill, and Field 

2007; Lobell and Field 2011; Lobell, Torney, and Field 2011; Deschenes and Kolstad 2011; H. 

Lee and Sumner 2015). Most works use county-level data, and some works use individual farm-

level data (Ramsey, Bergtold, and Heier Stamm 2021; Wimmer et al. 2024). Our work also uses 

regional-level parcel level data in irrigated agriculture to assess the climate-induced land-

transition. Recent estimates of climate-induced crop switching in dryland agriculture are at the 

county-level scale (e.g., Arora et al. (2020); Mu et al. (2018)) and mask significant parcel-level 

heterogeneity of attributes. The literature on climate-agriculture interaction lacks empirical 

evidence on shifts in agricultural land use at the micro level, such as determining whether and to 

what extent farmers are shifting from annual to perennial crops. This paper fills this gap by 

combining parcel-level agricultural land-use data and long run historical climate variables to 

assess climate-induced land-use transition in California’s Central Valley  

Climate change has significant impact on agricultural operations. Agriculture is one of the most 

vulnerable sectors to climate change. Farmers adapt to climate change in different ways. For 

example, they modify their management practices, they introduce new technologies, such as 

irrigation technologies, they introduce new varieties, and in many cases, they adjust their land 

use to new climatic conditions that affect the farm. In this paper we focus on land use changes as 

an adaptation to climate change. The Central Valley is an excellent area for studying because of 

the significant role of agriculture and its reliance on climate (Pathak et al. 2018). The richness of 

cropping patterns, the large variation in climate conditions across the Central Valley, and the 

dependence on irrigation water all make this region a microcosm to many other regions 

anywhere. 
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The research asks how and to what extent farmers make land-use decisions in irrigated 

agricultural production in response to various long run (normal) measures of climates to capture 

long-run adaptation. We provide empirical estimates on expected land-use changes in the Central 

Valley of California using parcel-level panel data and detailed time series cropland data, 

conditional on heterogeneous land quality. This study exploits parcel-level variations in crop 

types to estimate the impact of climate change on irrigated agriculture by shifting crops, which 

captures growers’ behavioral response in long-run adaptation. We follow the literature (e.g., Mu 

et al. (2018); (2017); Cho and McCarl (2017)) to apply fractional multinomial logit land-use 

model, in which the share of crop types (annual crops, perennial crops, and non-cultivated 

crops), as a measure of a land-allocation decision variable, is explained by long run historical 

averages of climate variables (accumulated annual precipitation, degree days for summer and 

winter, and accumulated hours of winter chill) and heterogeneous land quality. 

We find that growers are switching to perennial crops from annual crops in response to 

changing climates. The parcel-level shares of perennial crops show a U-shaped relationship with 

long-term degree days during summer and cumulative chill winter hours, negatively associated 

with degree days during winter, and with annual precipitation. In contrast, the parcel-level land-

use shares of annual crops show an inverse U-shape relationship with long-term degree days, 

while they show a U-shape relationship with long-term precipitation. Analysis of agricultural 

land-use with heterogeneous land quality suggests that transitioning land to perennial crops has a 

probability of more than 50% in high-quality land, while the probability of transitioning to 

perennial crops in the next period is below 50% in low-quality land. Results from this analysis 

help play a key role in understanding potential climate adaptation options and, thus, impact on 
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food supply trends from a major food producing region at present and in the future under climate 

change. 

Next, using econometric estimates, we simulate the impact of climate change on land-use shares 

in California and evaluate farmers’ private adaptation through land-use choices based on their 

expectations of future climate. The simulations predict changes in land allocation at the parcel 

level due to exogenous changes in projected climate variables. Specifically, we predict changes 

in future land-use shares for 2031–2055 relative to 1981–2005, conditional on soil quality and 

farmland appraisal value trends. These simulations suggest the direction of farmland adjustment, 

which serves as a measure of private adaptation to respond to projected climate changes. The 

predicted agricultural land-use change favors annual crops over perennial crops based on future 

climate projections. 

2. Theoretical and Empirical Framework  

A simple framework explaining farmers’ land-use decision is given by 𝑦𝑗𝑖𝑡 =

𝑦𝑖(𝜓𝑖𝑡, 𝑆𝑖 , 𝐴𝑖𝑡 , 𝑍𝑖𝑡; 𝜀𝑗𝑖𝑡) where 𝑦𝑗𝑖𝑡 is the crop-specific land-use share for crop 𝑗 = {1, … , 𝐽} (in 

our analysis 𝐽 = 3), in parcel 𝑖, at year 𝑡 (in our analysis 𝑡 = 2008, … ,2021). 𝜓𝑖𝑡 represents 

expected climate conditions, including 27-year moving average precipitation, degree-days, and 

winter chill hours. 𝑆𝑖 is soil quality conditions; 𝐴𝑖𝑡is the annual appraisal value of farmland, a 

hypothetical value, which potentially reflects the net returns from crop production at the farm-

level and does not include future development returns; 𝑍𝑖𝑡 includes other variables, such as 

population density and time trend, and 𝜀𝑗𝑖𝑡 represents unobserved variables that may influence 

the farmers land-use decisions. We assume that the annual appraisal value of farmland captures 

the expectation of long-term operating profits, and therefore net returns to agricultural land-uses. 
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We take advantage of the observed use value assessment of agricultural land in California to 

account for parcel-level observations of net returns in our analysis. 

For our empirics, we follow previous studies (e.g., Mu et al. (2018); Cho and McCarl 

(2017)) to model land allocation shares for each usage type 𝑗 in parcel 𝑖 and year 𝑡, 𝑦𝑗𝑖𝑡, where 

𝑦𝑗𝑖𝑡 ∈ [0,1] ∀ 𝑖, 𝑡 and ∑ 𝑦𝑗𝑖
𝐽
𝑗=1  = 1. In our analysis, there are four types of use: perennial crops, 

annual crops, non-cultivated crops, and no cropland. For the purposes of our analyses, we apply 

a fractional multinomial logit model to estimate the impact of climate change on land-use shares 

in the Central Valley of California.1 The estimated equation is  

(1)  𝐸(𝑦𝑗𝑖𝑡|𝑊, 𝑋, �̅�; 𝜀𝑗𝑖𝑡 ) =
𝑒𝑥𝑝 (∑ 𝛽𝑗𝑘𝑓𝑘(𝑊𝑘𝑖𝑡)+𝛾𝑗𝑋𝑖+𝜙𝑗𝑍�̅�+𝜀𝑗𝑖𝑡𝑘=1∈𝐾 )

∑ 𝑒𝑥𝑝 (∑ 𝛽𝑗𝑘𝑓𝑘(𝑊𝑘𝑖𝑡)+𝛾𝑗𝑋𝑖+𝜙𝑗𝑍�̅�+𝜀𝑗𝑖𝑡𝑘=1∈𝐾 )𝐽
 

where 𝑦𝑗𝑖𝑡 denotes the land use shares for usage types 𝑗 in parcel 𝑖 at time 𝑡. 𝑋𝑖 is a vector 

representing observable determinants of land use decisions, such as the parcel-specific land 

capability class. We use an indicator for high-quality land (LCC12) and two indicators for low-

quality land (LCC34 and LCC5678). 𝑘 = 1,2,3, … , 𝐾 denotes various measures of climate 

variables. We follow previous literature from the California study area (e.g., see Lee and Sumner 

(2015)) to include climate normals from 27-year moving averages for degree days (in summer 

and winter), total annual precipitation, and chill winter hours. 𝑓𝑘(. ) represents non-linearities 

such as squared terms in precipitation, degree days, and chill hours. 𝛽𝑗𝑘 are long-term climate 

coefficients to be estimated for each land use share 𝑗 and represents our variable of interest. 

Following Mu et al. (2018), we include the vector of 𝑍�̅�, which is climate variables averaged over 

time for each parcel 𝑖, to overcome the difficulty of including fixed effects in the fractional 

                                                            
1 We use the FMLOGIT Stata package to estimate the fractional multinomial logit model (Buis 2008).  
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multinomial logit model (Mundlak 1978). This approach is basically an extension of 

Chamberlain-Mundlak approach or correlated random effects that allows for unobserved 

heterogeneity to be correlated with observed time varying covariates (Wooldridge 2019). 𝜀𝑗𝑖𝑡 

represents error terms. Standard errors are clustered at the parcel level. 

We assume that all climate variables are strictly exogenous, (𝐸[𝑊𝜀] = 0). There may be a 

concern that the inclusion of the appraisal value of land as a regressor may be correlated with the 

error terms, such as soil quality, and therefore is endogenous, (𝐸[𝑋𝜀] ≠ 0). We control for this 

by including the land capability class (as a measure of soil quality). Growers can reduce cost 

expenditure with high-quality land, while low-quality land may increase cost expenditure for 

crop production. Crop cultivation in high-quality land is characterized by few limitations: 

physical (such as soil fertility, water-holding capacity, and topsoil depth), topographical, and 

meteorological. However, low-quality land is characterized by more physical constraints on crop 

productions. We would expect growers to maximize their returns from crop production by 

allocating more land shares to perennial crops on high-quality land with minimal cost 

expenditures and on low-quality lands with maximum cost expenditures.  

The marginal effect of land-use shares with respect to climate normal is expressed as 

(2)  𝑀𝐸(𝑦𝑗𝑖|𝑊𝑖) =
𝜕𝐸(𝑦𝑗𝑖| 𝑊𝑖)

𝜕𝑊𝑖
= 𝐸[𝑦𝑗𝑖|𝑊𝑖](𝛽𝑗𝑊 − ∑ 𝛽𝑗𝑊𝐸[𝑦𝑗𝑖|𝑊𝑖])𝑗=1∈𝐽  

where 𝐸(𝑦𝑗𝑖| 𝑊𝑖) =
exp (𝛽𝑗𝑊𝑖)

∑ exp (𝛽𝑗𝑊𝑖)𝐽
, represents a simple expression of Eq. (1), after dropping 

subscript 𝑡, non-climate covariates, and error terms. In the same way, we calculate the marginal 

effects of land-use shares with respect to land quality.  
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3. Data and Descriptive Statistics 

3.1. Data Sources 

The empirical analysis combines cropland data and climate data at the farm-level. The 

boundaries of farmland land data are sourced from ATTOM data. Our analysis is based on 49,175 

farm parcels in California’s Central Valley, spanning 11 counties.2 These parcels are associated 

with field crops, orchards, and vineyards from 2008 to 2021 (see the map of the study area in the 

Appendix Figure A1). The Central Valley is composed of the Sacramento and San Joaquin 

Valleys. The Central Valley is very important for the agricultural sector of California. It grows 

hundreds of different types of products due to its Mediterranean-like climate, and supports food 

security of the United States (Jessoe, Mérel, and Ortiz 2021). However, it is also vulnerable to 

future climate change (J. Lee, De Gryze, and Six 2011). For the purposes of our analysis, we take 

advantage of the reported appraisal value of farmland to include as a regressor in our 

econometric specification. In the subsequent subsection, we provide a brief introduction to the 

use-value assessment of agricultural land in California. 

3.1.1. Cropland Data 

To determine land use changes, we rely on the annual Cropland Data Layer (CDL), a raster-

based land-use map, at 30×30 meter resolution for 2008 through 2021.3 The USDA, National 

Agricultural Statistic Service (NASS) publishes CDL products using a machine learning model 

                                                            
2 The panel dataset consists of farm parcels in 11 counties in the Central Valley. Fresno County accounts for the 

largest number of parcels with 13,639 (27.74%), while Tulare County has 10,359 (21.07%), Kern County has 5,742 

(11.68%), Merced has 5,890 (11.98%), San Joaquin has 4,146 (8.43%), Butte has 2,925 (5.95%), and Glenn County 

has 2,642 (5.37%). Counties that contribute less than 5% of the sample in our analysis are Yolo (2,337; 4.75%), 

Placer (352; 0.72%), Yuba (619; 1.26%), and Solano (524; 1.07%). 

3 CDL can be accessed through CropScape at http://nassgeodata.gmu.edu/CropScape/ 
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based on a combination of satellite imaging and agricultural ground data collected during the 

growing season (Boryan et al. 2011). CDL products are available for the contiguous United 

States at a 30 m spatial resolution annually since 2008. We acknowledge that inherent CDL 

errors can cause uncertainty in land-use change calculations (Reitsma et al. 2016; Laingen 2015). 

Despite these limitations, the CDL data is a primary source of land use information at the micro-

level and is widely used in the literature to influence land use policies (e.g., Boser et al. 2024; 

Ramsey, Bergtold, and Heier Stamm 2021; Jiang et al. 2021). To reduce errors when 

distinguishing spectrally similar land cover classes, we combine CDL classes into perennial, 

annual, and non-cultivated crops and utilize time-series cropland data, following 

recommendations from the literature (e.g., Lark et al. (2017)).4 In addition, a stable climate 

regime and homogeneous biophysical characteristics, such as our study area in the Central 

Valley, also reduce the false positives, which lowers inaccuracy in cropland data (Reitsma et al. 

2016). For the purposes of our analysis, we require associations between specific crop types 

(crop-specific identification and acreage estimates) and farm parcels (Appendix Table A1). We 

extract crop types at the parcel level in the Central Valley of California and then we construct the 

share of perennial, annual, and non-cultivated crops within a parcel.5 6 Appendix Figure A2 

presents a comparison between CDL cropland acreage and USDA NASS acreage for the study 

area from 2008 to 2021.7 CDL cropland acreage data follows NASS harvested acres for the years 

                                                            
4 In addition, to compare the construction validity of the derived crop acreage, we take the ratio of the parcel area 

derived from the geographic information system (GIS) to the parcel area reported in the assessor’s table. Any value 

greater than one means that the area of the parcel from the GIS exceeds the area of the parcel reported in the 

assessor’s table. We drop observations above 95% of the distribution of measurement errors. Dropping all the 

observations with a ratio higher than one does not change our main results. 
5 The percentage of perennial, annual, and uncultivated crops was derived by taking the ratio between the area of 

perennial, annual, and non-cultivated crops in a parcel and the total cropland.  

6 To convert pixel to acres, we use a multiplier, 900*0.0002471054, to pixel values.  
7 We compare CDL crop-specific land cover data with NASS survey data from 2008–2021. We obtain the NASS 

dataset from the USDA’s NASS California Field Office, which is operated in cooperation with the California 
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2008 through 2021, except for 2009, 2018 and 2019. In 2009, CDL data acres saw a sharp 

decline, but in 2018 and 2019, NASS harvested acres saw a sharp increase. In our robustness 

checks, we perform regression analysis on the main specifications after excluding these years 

(i.e., shares of land use for the period of 2010 to 2017). 

3.1.2. Climate variables 

Our main climate variables are growing degree days (GDD) during summer (April through 

August) and winter (November through May of the next year), the total annual accumulated 

precipitation, and accumulated chill hours during winter (November through February of the 

next year) derived at the parcel-level using the PRISM daily dataset for the years 2008–2021. For 

our analysis, we compute the 27–year normal for all our climate variables. The PRISM data is a 

high-resolution dataset suitable for analyzing the heterogeneous landscape of California (Jessoe, 

Mérel, and Ortiz 2021). 

Next, we follow Jackson et al., (2012) to calculate the daily chill hours using the daily minimum 

temperature, mean temperature, daily maximum temperature, and the reference temperature 

(7.22 degrees Celsius). Winter chill hours are the sum of daily chill hours during plant’s 

dormancy period of November through February. Depending on the variety, a tree crop can 

require anywhere from 200 and 1500 chill hours (below 7.2 degrees Celsius) during winter to 

produce flowers and fruits (Baldocchi and Wong 2008). Appendix B provides more details on 

variable construction. The winter chill hour is a critical climate variable in the fruit and nut 

growing region of the Central Valley of California. Climate change induced warming is expected 

to reduce the accumulated number of chill hours in the Central Valley of California (Baldocchi 

                                                            
Department of Food and Agriculture. NASS survey data can be accessed through 

https://www.nass.usda.gov/Statistics_by_State/California/Publications/AgComm/index.php. 
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and Wong 2008). This may pose a potential threat to the production of high-value nuts, fruits, 

and other tree crops, and could have an economic and culinary impact on California. 

3.1.3. Land Capability Class 

We link the parcel-level cropland data to the dominant land capability class (LCC), an integrated 

measure of soil quality and agricultural potential, which is widely used in the literature to 

measure land quality. We obtained LCC data for California from the California Soil Resource 

Lab at UC Davis, which is available in grid cells of 800 meters (Walkinshaw, O’Green, and 

Beaudette 2023). LCC data includes values for both irrigated and non-irrigated agriculture. Our 

focus is on irrigated LCC because the majority of farmland in the Central Valley is irrigated. 

Irrigated LCC has eight classes. As we move along the land capability classes, from class I 

through VIII, the constraints on soil suitability for crop cultivation also increases. The constraints 

in LCC are characterized by soil erosion and runoff, excess water, root zone depth, climate 

limitations, and limitations on mechanized farming activity. Class I has a few limitations that 

restrict their use for crop cultivation, while class VIII has severe limitations that reduce the 

choice of plants and need special conservation practices. 

3.1.4. Background: Use-value assessment of agricultural land in California 

In our theoretical framework, we assume that growers’ land use decisions are based on the 

expected returns from the land in its optimal use. In the absence of data on the economic returns 

to land at the farm level, we use the appraisal value of land to capture the net returns to land from 

crop production. In this subsection, we first present the background of the use-value assessment 

of agricultural land in California and then discuss the relevance of the appraisal value of land in 

capturing the net returns to lands. 
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The Uniform Standards of Professional Appraisal Practice (USPAP) defines the practice of 

valuation as the act or process of developing a value opinion for estimating the value of property 

(USPAP 2010). In California and nationwide, local assessors assess farmland based on its use 

value in agriculture. To assess the agricultural land for tax purposes, the land is valued in its 

agricultural (current) use and ignores future development potential and non-agricultural land uses 

(Anderson and Griffing 2000). The use-value assessment of agricultural land is usually lower 

than its full market value due to the lower agricultural use value, other things being equal. A 

primary motivation of significantly lower assessment value is to provide a more equitable 

distribution of the property tax burden between agricultural and non-agricultural landowners. 

Additionally, the lower farmland assessment values compared to market value serves as the basis 

for property tax relief for farmland owners. The aim is to reduce the tax burden on farmers and 

prevent the conversion of farmland to developed areas. 

Licensed or certified appraisers employed by government agencies, such as county 

appraiser’s office and/or professional agencies, such as American Society of Farm Managers and 

Rural Appraisers (ASFMRA) to appraise taxable properties, including agricultural land. An 

assessor in a California jurisdiction is required to estimate the value of farmland based on 

agricultural use. Typically, when a property is purchased, the county appraiser assigns an 

assessment value of land equal to the purchase price. Each year after that, the property’s assessed 

value goes up by 2 percent or the rate of inflation, whichever is less. The assessment is not 

necessarily done every year, and in some cases, assessment is done in the year following the sale. 

This process continues until the property is resold and the assessed value is adjusted in 

accordance with the current purchase price. This reassessment does not apply in the case of 

certain exceptions, for example, properties damaged by a disaster, transfers with the same family, 
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etc.8 California Land Conservation Act of 1965 (also known as the Williamson Act Program, an 

agricultural preserve program), 9 another land program, enables local government to enter into 

contracts with private landowners for a long-term commitment to conserve farmland.10  

Proposition 13 (an annual 2% increase in assessment value for unsold properties) and the 

Williamson Act (encourages landowners to keep their land in agriculture) govern land appraisers 

in California.  

Based on personal communication with an assessor in Merced County, California, the 

assessment value is based on historical data and may not be used to predict land values. In 

contrast, the sale prices are forward-looking. Moreover, assessor’s valuation by Williamson Act 

can also cause an annual increase greater than 2%.  In particular, variables which effect 

Williamson Act valuation include, but not limited to land rents, crop yields, commodity prices, 

and statutory cap rates provided to Assessor by State Board of Equalization.  

The assessed value of agricultural land may not exceed the market value of all parcels 

(sold or not). In addition, following cases where the assessed value may differ from Proposition 

13’s 2% annual increase: 

                                                            
8 A detailed summary is provided in the brief report by Understanding California's Property Taxes. Available at: 

https://lao.ca.gov/reports/2012/tax/property-tax-primer-112912.aspx 
9 The agricultural preserve program encourages landowners to continue to use their lands for agricultural purposes 

rather than converting them to non-agricultural purposes. Other examples in California include Farmland Security 

Zone contracts which offer a property tax reduction of 65% of its Land Conservation Act or 65% of the Proposal 13 

assessment, whichever is lower. 
10 The assessment is based on agricultural production rather than full market value to reduce the property tax. 

According to the California Department of Conservation, the Land Conservation Act is expected to save agricultural 

property owners 20-75% in property taxes each year. For a detailed discussion, see 

https://www.fresnocountyca.gov/Departments/Assessor/Williamson-Act 
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Case 1: For unsold parcels, where improvements (e.g., crop switch, installation of 

irrigation pipeline, construction of buildings, and other structures) have been made to the 

parcel. 

Case 2: For unsold parcels, if the market value of parcels with similar characteristics 

(e.g., location, land size, soil quality, irrigation district, improvements, crop types) is 

lower than the historic assessed value. The assessed value may have a lower value than 

the base value. 

In California, farm managers and agricultural consultants assess farm parcels and may 

influence agricultural inputs and other crop production and marketing decisions. For our 

purposes, we use the appraisal value of land to capture the net returns from the farmland.  

3.2. Descriptive Statistics 

Table 1 presents the descriptive statistics of 657,554 observations (49,175 parcels representing 

3.78 million acres) from 2008 to 2021. The farmlands are located in 11 counties of the Central 

Valley. We construct land-use shares by dividing the shares for each crop type within a parcel by 

the total cropland data of that parcel. Our sample may contain a parcel that is linked to one or 

more crops. Perennial crops have the highest land-use shares on average at 0.52, followed by 

annual crops (0.32), and non-cultivated crops (0.16). The non-cultivated crops share includes 

fallow/idle land as well as natural vegetation. About 21% of parcels do not have a share of 

perennial crops, while 34% and 41% of parcels do not have a share of annual crops and non-

cultivated crops, respectively.  

Appendix Table A2 present the composition of our dependent and explanatory variables over 

years in the study region. The share of perennial crops increased by 29 percent from 0.48 in 2008 
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to 0.62 in 2021, while the share of annual crops declined by 32 percent from 0.38 in 2008 to 0.26 

in 2021. The non-cultivated crop shares, which include fallow/idle land and natural vegetation, 

varied between 0.11 to 0.20, with an upper bound during drought years. Over the years, the 

variation shows that perennial crops are substituting annual crops, and the proportion of non-

cultivated crops has remained the same, with higher lands being fallowed or idled during drought 

periods.  

Appendix Table A3 present crop-specific land shares and land quality to examine crop-specific 

variations over time. For illustration purposes, we randomly split the sample into two periods: 

the first period from 2008 to 2014 and the second period from 2015 to 2021. The land share 

allocated to perennial crops, particularly almonds, pistachios, and nuts, increased by 8% in the 

second period. This increase was predominantly in high-quality land (with a 10% increase in 

LCC12) and in low-quality land (with an 8% increase in LCC34 and 2% in LCC5678). The land 

share allocated to annual crops declined by 12%, with a reduction of 10% in high-quality land 

and a 6% and 2% decline in low-quality land (LCC34 and LCC5678). Together, the trends in 

agricultural land use shares indicate that substitution of annual crops for perennial crops, 

particularly allocation to almonds, pistachios, and nuts, has occurred on both high-quality 

(LCC12) and low-quality land (LCC34 and LCC5678). 

Next, we discuss the climate variables used in the study (as shown in Appendix Figure A3). We 

use 27-year moving averages to create long-term climate normals. The degree days in summer 

are more than twice as high as those in winter. During our study period, on average, there were 

2,086 degree days in summer and 984 degree days in winter. The long-term average total 

precipitation was 346 mm. In winter, the valley accumulates 962 hours of long-term chill hours, 
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on average.11 The average degree days of both summer and winter have remained constant 

throughout the years, with the summer average being slightly over 2000 days and the winter 

average being almost 1000 days (Appendix Table A2). The long-term precipitation levels tend to 

be around 350 to 370 millimeters, with the exception of 2009 when they fell drastically to nearly 

300 millimeters from 370 millimeters. Over time, the cumulative chill hours during winter have 

decreased, from 1006 cumulative hours in 2008 to 892 cumulative hours in 2021. Although there 

has been a decrease in the number of chill hours accumulated during winter, the values for most 

tree crops still exceed the upper bound thresholds. 

To assess parcel’s suitability for agricultural production, we utilize a composite class category 

called land capability class (LCC: classes 1 through 8) and construct one indicator for high-

quality land (LCC12: combined classes 1 and 2) and two indicators for low-quality land (LCC34: 

combined classes 3 and 4 and LCC5678: combined classes 5 through 8). On average, more than 

half of the sample is on high-quality land (56%), while 40% of the sample is on low-quality land, 

and only 4% of the sample is on the lowest-quality land. 

We use the appraisal value of farmland, divided by the acreage of the lot, to calculate the variable 

appraisal value per acre as a measure of net returns from the farmland. On average, the appraised 

value of farmland in the study area and period (2008–2021) is 7.31 thousand dollars per acre. 

The dollar values are adjusted for inflation. The annual Gross Domestic Product (Chain-Type 

Price Index) obtained from the Federal Reserve Economic Database is used to convert nominal 

values to 2017 U.S. dollars (U.S. Bureau of Economic Analysis. 2024).   

 

                                                            
11 This and the other climate data are averaged over a suite of stations from all 11 counties in the valley. 
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4. Results and Discussion 

We first present the correlation between agricultural land-use shares and the climate variables. 

Second, we present the transition probabilities derived from the logit model conditional on 

parcel-level characteristics. Third, we present our empirical results from Eq. (1). Specifically, we 

present the average marginal effects from the fractional multinomial logit regression. Fourth, we 

perform robustness checks: (1) to address measurement error in land use change CDL data, we 

limit the sample size for the years 2010–2017; and (2) we include an additional regressor for 

distance to control for the correlation between the proximity of parcels to one another.  Lastly, 

using the estimated coefficients from our econometric model, we simulate the changes in land-

use shares of perennial and annual crops at the parcel-level to respond future climate projection. 

4.1. Correlation between agricultural land-use shares and climate variables 

Appendix Figure A4 (a) and (b) present scatter plots showing correlation between the share of 

perennial and annual crops and climate variables. The correlation between the land use share of 

perennial crops and climate variables suggests a distinct relationship. For example, the 

relationship between the share of perennial crops and the degree-days suggests that the share of 

perennial crops will increase at an increasing rate during summer, while the share of perennial 

crops will increase at a decreasing rate during winter degree days. The correlation between the 

share of perennial crops and total annual precipitation is flat for most of the time, but then 

decreases with an increase in total precipitation. The relationship between perennial crops shares 

and the accumulated chill hours during winter suggests a decline with an increase in additional 

chill hours. This may seem counterintuitive. The reason for this may be that the long-term 

cumulative chill hours for tree crops have already potentially reached their maximum, and any 
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additional chill hours may cause a decrease in yields.12 In contrast, the land use share of annual 

crops has decreased in relation to all climate variables. This may indicate that the share of annual 

crops may decrease more rapidly in the future due to an increase in growing degree days during 

winter. 

4.2. Transition probabilities 

We disaggregate the land-use shares of perennial and annual crops into crop-specific land-use 

shares by land quality and year in the study region, as shown in the Appendix Table A3. The 

changes in land-use shares are displayed for two periods (Period I: 2008–2014 and Period II: 

2015–2021) to maintain readability. We choose the years ad hoc so that there is the same number 

of years for both periods. The land shares allocated to perennial crops increased by an average of 

nearly 10% within a farm parcel. This increase in perennial crops shares is significant in high-

quality land, with an increase of about 10%, followed by an increase of 8% in LCC34 and 2% in 

LCC5678 low-quality land. Almonds, pistachios, and nuts are the perennial crops that feature in 

such increases. In contrast, the percentage of annual crops decreased by 8%. The greatest 

decrease occurs in high-quality land, which accounts for nearly 10% of the loss, and LCC34 

(approximately 8%). Notably, alfalfa’s shares fell by nearly 5% in both high-quality land 

(LCC34) during the second period. Lastly, the non-cultivated crop shares experienced a modest 

decrease of 1% from high-quality land. 

Appendix Table A4 displays the probability of continuing to grow the same crop in the second 

period (2015-2021). Average marginal effects are reported from the logit model conditional on an 

indicator of crops grown in the first period (2008–2014), and current parcel-level characteristics 

such as climate variables that include degree-days (in summer and winter), total annual 

                                                            
12 If the chilling received is higher than the needs of a variety, it can cause the tree to bloom too early and then be hit 

by frost or not have warm enough temperatures during its early fruit/nut development period. 
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precipitation, chill hours during winter, and soil quality (an indicator of LCC34 and LCC5678).13 

Column (1) of Appendix Table A4 reports the probability of crops staying in the same state in the 

second period. The likelihood of a grower cultivating almonds, pistachios, and nuts in the second 

period is 92%. Similarly, growers are likely to cultivate grapes, citrus, and other subtropical 

fruits with a probability of 63% and 37%, respectively. In contrast, annual crops have a 

probability of less than 50% of growing in the second period, except for alfalfa (55% probability 

of continuing to grow alfalfa). It can be inferred from this that several annual crops have a 

greater than 50% probability of transitioning to perennial crops. Lastly, land that was fallowed or 

idled in the first period have an 80% probability of continuing to be fallowed or idled. The 

likelihood of natural vegetation being in the same state is only 27%. 

We repeat the analysis for each land class (LCC12, LCC34, and lCC5678) to construct 

transition probabilities. Columns 2, 3, and 4 of Appendix Table A4 report the results. The 

transition probability of high-quality (LCC12) and low-quality (LCC34) land for perennial crops 

shares is similar to the transition probability for all lands. The transition probability of the lowest 

quality land (LCC5678) shows that perennial crops have less than 50% probability of continuing 

to grow the same crop. In the case of grapes, the probability decreased to 10%. Non-cultivated 

crops (fallowed or idled, and natural vegetation) have more than 50% probability of remaining 

fallowed or in natural vegetation. 

4.3. Empirical Results 

Table 2 presents the marginal effects from fractional multinomial logit regression (Eq. 1) 

evaluated at the mean values. We use the share of non-cultivated crops as the base case. The non-

                                                            
13 Using the Stata command margins, we obtain the marginal effects evaluated on mean of all covariates used in the 

analysis. 
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cultivated crops share includes fallow/idle land as well as natural vegetation. Columns 2 and 4 

show marginal effects after the inclusion of the appraisal value of land to account for net returns 

from the land, and these are our preferred specifications (see Appendix Table A5 for full results). 

Results suggest that a thousand-units increase in degree days in summer, all else equal, is 

associated with an average decrease of 50%, and an average increase of 119% for land allocated 

to perennial and annual crops, respectively. The degree-days in winter are negatively associated 

with both perennial and annual crop shares, with a 66% decrease in land use share for perennial 

crops and 53% for annual crops. Long-term annual accumulated precipitation leads to an average 

increase of 20% in share of perennial crops, while annual crops see an average increase of 6%. 

The importance of chill hours during winter is greater for perennial crops, and the results indicate 

that hundred-unit increase in long-term chill winter hours is associated with an average decrease 

of 12% in land allocated to perennial crops.  

The estimated coefficients of dummy variables for low-quality land, which are less suitable for 

agricultural production, LCC34 and LCC5678, can be interpreted relative to high-quality land. 

LCC34 and LCC5678 are low-quality lands that show an average of 2% and 29% less land 

allocated to perennial crops than high-quality land. The allocation of annual crops rises when 

compared to high-quality land in low-quality lands: 19% in LCC5678. Low-quality lands 

(LCC34 and LCC5678) are more likely to have fallowed/idled land or natural vegetation. 

Figure 1 shows the non-linear relationship between predicted land use shares and changes in 

long-term degree-days (in summer and winter), total precipitation, and chill hours in winter. 

Perennial crops’ land share has an upward slope for degrees days in summer, while it has a 

downward slope for degrees days in winter, following the 25th percentile distribution of degrees 

days. Moreover, perennial crops demonstrate a negative relationship with long-term annual 
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precipitation, as indicated by a downward slope. In contrast, the land shares of annual crops have 

an inverse U-shaped relationship with degrees of day in summer and winter, and U-shape 

relationship with long-term annual precipitation. Tree crops experience significant variations in 

chill hours during winter, where they require 200 and 1500 hours below 7.2 degrees Celsius to 

produce flowers and fruits. The marginal effects of long-term chill hours on perennial crops, 

evaluated at various intervals, are negative, and statistically significant. This outcome may be 

partially influenced by almonds and pistachios, as opposed to other tree crops. Pistachios are 

quite low-chill, and almonds are not too high (about 500 hours). Other tree crops that have higher 

chill hours requirements, we would expect them to decline. Dividing perennial crops into 

almonds, pistachios, nuts, and other tree crops will allow us to examine this hypothesis. 

Appendix Table A6 presents the average marginal effects of fractional multinomial logit 

regression. The results suggest that share of almonds, pistachios, and nuts have a negative and 

statistically significant relationship with long-term degree days in winter, annual precipitation, 

and chill hours.  

4.4. Robustness checks and sensitivity analyses 

As mentioned in the data section, the changes in agricultural land use in the CDL cropland time 

series are more reliable and less uncertain for the years 2010 - 2017. Using the restricted years 

sample (2010–2017), average partial effects from the fractional multinominal logit regression 

results, shown in column 1 and 3 of Table 3, suggest that land use shares of perennial crops are 

positively and negatively associated with long-term degree-days during summer and winter, 

respectively. The main results show that the share of perennial crops is negatively linked to 

degree-days in both seasons, which is contrary to this. The estimates of long-term precipitation 

and chill hours during winter are both positive and negative and are in line with the main results. 
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In addition, the estimated coefficients of soil attributes and the appraisal value of land are the 

same as the main results. While the land use shares of annual crops are positively associated with 

long-term degree days during summer and winter, they are statistically insignificant during 

summer. The estimated coefficients in the remaining covariates are the same in sign and 

significance, but larger in magnitude compared to the main results. 

Next, there may be a concern about farmland parcels near each other that may have unobserved 

characteristics that are correlated across space and may potentially influence growers’ land-use 

decisions. Previous studies (e.g., Lubowski, Plantinga, and Stavins (2008)) have addressed the 

issue by removing observations that are close together. We address this concern by utilizing 

parcel locations to establish the average distance between parcels of the five closest neighbors. 

Then, add this variable to the main specification. Columns 2 and 4 of Table 3 provide an average 

marginal effect derived from fractional multinomial regression results in columns 2 and 4. The 

estimated coefficients are similar to the main results in sign, size, and significance. 

4.4. Changes in Land-Use Shares Under Future Climate Projection 

Using the daily downscaled projections from NASA’s NEX-GDDP-CMIP6 dataset, we simulate 

the impacts of future climate change on land use at the parcel level in the Central Valley of 

California.  Specifically, we utilize the Goddard Institute of Space Studies (GISS) climate 

model’s downscaled daily weather projections for the socio-economic pathways (SSP45 and 

SSP85) to calculate degree-days, chill hours, and precipitation for future years 2031–2055 

relative to 1981–2005 (Thrasher et al. 2021; 2022). We take advantage of georeferenced parcel-

level data to project the impacts of climate change on land use decisions at the farm-level. 

However, downscaling climate models at the farm level also introduces more noise and less 

accuracy, and therefore readers must be cautious when interpreting our results. The predictions 
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for climate variables used in our analysis relative to their averages during 1981–2005 are 

presented in Appendix Table A6. In the Central Valley, the SSP45 and SSP85 scenarios applied 

shows that the average degree-days in summer and winter in 2031–2055 may be higher than in 

1981–2005 by 206 (or 10.06% over the historical mean between 1981 and 2005) and 291 (or 

25.94%) days, respectively. The total average annual precipitation in 2031–2055 may increase by 

39.4 mm (or 10.37%) relative to 1981–2005. In contrast, the accumulated chill hours during 

winter in 2031–2055 may significantly decrease by 284 hours (or 38.64%) relative to 1981–

2005. 

Using the estimated coefficients from our econometric model, we estimate the land-use change 

that can be attributable to changes in crops’ comparative yield advantage due to projected climate 

change - certain crops will perform better than others in future climates. We follow literature to 

estimate the predicted gain or loss in the projected climate-driven land use shares of perennial 

and annual crops: (
𝜕𝐸(𝑦𝑗𝑖| 𝑊𝑖)

𝜕𝑊𝑖
∗ Δ�̅�) ; where 

𝜕𝐸(𝑦𝑗𝑖| 𝑊𝑖)

𝜕𝑊𝑖
 is the average marginal effect from 

fractional multinomial logit regression with respect to climate variables, such as degree-days in 

summer and winter, annual precipitation, and accumulated chill hours during winter. Δ�̅� 

represents the difference between the average projected climate variables in 2031–2055 and the 

average climate variables in 1981–2005 (as shown in the Appendix Table A7).  

Table 4 presents the predicted changes in farm-level land-use shares of perennial and 

annual crops in the SSP45 and SSP585 projected climate scenario. The land-use share of 

perennial crops decreases by 10% and 19% during summer and winter respectively for projected 

degree days in the SSP45 climate scenario. The biggest change in the percentage of perennial 

crops is caused by the accumulation of chill hours in winter, which leads to a 33% increase in 

land use. This result is puzzling, given the projected decline in cumulative chill hours during 
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winter. However, this result can be explained by the negative correlation between long-term 

winter chill hours and perennial crops. The shares of annual crops increase for all climate 

variables except for degree-days during winter. The largest increase in the share of annual crops 

comes from changes in the degree-days during summer (25%). The smallest decrease in land use 

shares of annual crops is attributed to an increase in projected total annual precipitation (2%). To 

sum up, these predicted changes in land-use shares suggest prospects for adaptation to climate 

change through adjustments in land use. 

5. Conclusions 

This paper examines growers’ revealed adaptation in land-use adjustments and changing 

cropping patterns (to capture long-term adjustments) in California in response to climate change. 

We provide estimates of long-run adaptive responses to climate-induced changes in California’s 

agriculture. Using farm-level data, this study provides microlevel evidence of the impact of 

climate change on land-use shares. This study exploits farm-level variations in crop types to 

estimate the impact of climate change on irrigated agriculture by shifting crops, which captures 

growers’ behavioral response to long-run adaptation. We developed an econometric model to 

account for the determinants of land-use decisions at fine spatial scales. We find that growers are 

switching to perennial crops from annual crops in response to changing climates. Specifically, 

land-use shares of perennial crops have a negative association with long-term degree-days and 

winter chill hours, while they have a positive association with precipitation. Switching to high-

value crops, which are also long-term water-demanding crops, may be in contrast to the potential 

water savings of a crop-switching strategy (Boser et al. 2024). Land-use shares of annual crops 

are positively associated with all climate variables, except for degrees-days during winter. By 

empirically quantifying climate-induced changes in land use shares at farm-level scales, we 
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evaluate the costly adaptation strategies, such as crop switching and fallowing, and contribute to 

literature on agricultural-climate interactions for California and other water stressed agricultural 

regions globally. 

 

 

 

 

 

 

Tables and Figures  

Table 1. Descriptive Statistics (N = 657,554). 

Variable Mean Std. Dev. Minimum Maximum 

Dependent variable: Agricultural land-use shares 

Perennial crops share 0.52 0.44 0 1 

Annual crops share 0.32 0.41 0 1 

Non-cultivated crops share 0.16 0.31 0 1 

Long-term climate normals from 27-year moving averages 

Growing Degree Days (thousands, summer) 2.09 0.15 0.59 2.34 

Growing Degree Days (thousands, winter) 0.98 0.11 0.04 1.27 

Annual Precipitation (100 mm) 3.46 2.09 0.92 21.06 

Chill Hours (100 hours, winter) 9.63 1.41 5.26 26.86 

Soil Attributes     

Land Capability Class (class 1 or 2) 0.56 0.50 0 1 

Land Capability Class (class 3 or 4) 0.40 0.49 0 1 

Land Capability Class (class 5 through 8) 0.04 0.19 0 1 

Use-value assessment of agricultural land in California 

Appraisal value of land (thousand dollars per acre) 7.36 8.23 0.03 53.37 

Notes: The dependent variable is agricultural land-use shares that add up to 1. Mean values are 

calculated for a sample of 49,175 from 2008 to 2021. The list of perennial crops includes 

almonds, pistachios, and nuts, grapes, citrus, other subtropical fruits, and other tree crops. The 

list of annual crops includes alfalfa, hay, grains, corn, cotton, tomatoes, safflower, onions, garlic, 

melons, squash, cucumbers, rice, dry beans, potatoes, other vegetables, berries, and other field 

crops. The non-cultivated crops share includes fallow/idle land as well as natural vegetation. To 

create land-use shares, we divide the shares for each crop type within a parcel by the total 

cropland data in that parcel. A parcel from our sample may be associated with one or more crops. 

Appraisal value of agricultural land is adjusted for inflation (base year is 2017) and is winsorized 

at the 1 and 99 percentiles. 
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Table 2. Average marginal effects from fractional multinomial logit regression 

 Perennial crops Annual crops 

 [1] [2] [3] [4] 

Long-term climate normals from 27-year moving averages 
Growing Degree Days (thousands, summer) -0.668*** 

(0.051) 
-0.498*** 

(0.051) 
1.253*** 

(0.053) 
1.193*** 

(0.052) 
Growing Degree Days (thousands, winter) -0.804*** 

(0.065) 
-0.654*** 

(0.065) 
-0.235*** 

(0.063) 
-0.532*** 

(0.063) 
Annual Precipitation (100 mm) 0.228*** 

(0.005) 
0.198*** 

(0.005) 
0.033*** 

(0.005) 
0.058*** 

(0.004) 
Chill Hours (100 hours, winter) -0.164*** 

(0.002) 
-0.117*** 

(0.002) 
0.111*** 

(0.002) 
0.074*** 

(0.002) 
Soil Attributes     
Land Capability Class (class 3 or 4) -0.023*** 

(0.003) 
-0.016*** 

(0.003) 
-0.018*** 

(0.003) 
-0.028*** 

(0.003) 
Land Capability Class (class 5 through 8) -0.353*** 

(0.015) 
-0.289*** 

(0.014) 
0.246*** 

(0.012) 
0.189*** 

(0.012) 
Use-value assessment of agricultural land in California 
Appraisal value of land (dollars per acre)  0.009*** 

(0.0003) 
 -0.005*** 

(0.0002) 
Mean of dependent variable 0.521 0.524 0.325 0.320 
Log Likelihood -571942.54 -527844.16 -571942.54 -527844.16 
Number of parcels 49,175 49,175 49,175 49,175 
Observations 685,716 657,554 685,716 657,554 

Notes:  

[1] The dependent variable is agricultural land-use shares (perennial crops are represented in columns 1–

2, and annual crops are represented in columns 3–4), with non-cultivated crops being the base case. The 

list of perennial crops includes almonds, pistachios, and nuts, grapes, citrus, other subtropical fruits, and 

other tree crops. The list of annual crops includes alfalfa, hay, grains, corn, cotton, tomatoes, safflower, 
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onions, garlic, melons, squash, cucumbers, rice, dry beans, potatoes, other vegetables, berries, and other 

field crops. 

[2] The explanatory variable includes degree-days, precipitation, and chill hours during winter (and their 

square terms), and indicators of LCC34 and LCC5678. See Appendix Table A5 for full results. 

[3] We follow Chamberlain-Mundlak’s approach to estimate fixed effects using the parcel-level averages 

of each climate and non-climate variable. 

[4] Standard errors in parentheses are derived from delta-method and are clustered at the parcel level.  

[5] Level of significance: ***p < 0.01. 

 

 

 

 

 

 

Table 3. Robustness checks. 

 Perennial crops Annual crops 

 Restricted 

sample 

[1] 

Include 

distance 

[2] 

Restricted 

sample 

[3] 

Include 

distance 

[4] 

Long-term climate normals from 27-year moving averages  
Growing Degree Days (thousands, 

summer) 
0.167** 

(0.080) 

-0.370*** 

(0.051) 

0.045 

(0.085) 

1.104*** 

(0.052) 
Growing Degree Days (thousands, 

winter) 
-1.347*** 

(0.132) 

-0.732*** 

(0.065) 

1.942*** 

(0.138) 

-0.487*** 

(0.063) 
Annual Precipitation (100 mm) 0.158*** 

(0.007) 

0.168*** 

(0.005) 

0.133*** 

(0.007) 

0.073*** 

(0.004) 
Chill Hours (100 hours, winter) -0.186*** 

(0.003) 

-0.114*** 

(0.002) 

0.191*** 

(0.005) 

0.072*** 

(0.002) 

Soil Attributes     
Land Capability Class (class 3 or 4) -0.018*** 

(0.003) 

-0.010*** 

(0.003) 

-0.028*** 

(0.003) 

-0.030*** 

(0.003) 
Land Capability Class (class 5 through 

8) 
-0.273*** 

(0.014) 

-0.272*** 

(0.014) 

0.183*** 

(0.012) 

0.180*** 

(0.011) 

Use-value assessment of agricultural land in California 
Appraisal value of land (dollars per 

acre) 
0.008*** 

(0.0003) 

0.009*** 

(0.0002) 

-0.004*** 

(0.0003) 

-0.005*** 

(0.0002) 
Average distance between parcels of the five nearest neighbors  
Distance (meter)  -0.0002*** 

(5.80e-06) 

 0.0001*** 

(4.77e-06) 
Mean of dependent variable 0.500 0.524 0.331 0.320 
Log Likelihood -331034.73 -518204.40 -331034.73 -518204.40 
Number of parcels 50,730 49,175 50,730 49,175 
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Observations 403,805 657,554 403,805 657, 554 

Notes: 

[1] The dependent variable is agricultural land-use shares, with non-cultivated crops being the base case. 

See Table 2 for more details. 

[2] Column 1 and 3 represent the average marginal effects for the years 2010-2017. Column 2 and 4 

include the average distance between parcels of the five closest neighbors.  
[2] Standard errors in parentheses are derived from delta-method and are clustered at the parcel level.  

[3] Level of significance: ***p < 0.01, **p < 0.05. 

 

 

 

 

 

 

 

 

 

 

Table 4. Projected impacts of climate change on land-use shares for perennial and annual crops 

under two climate scenarios 

 

 SSP45 SSP585 

 Perennial  

crops 

Annual  

crops 

Perennial  

crops 

Annual  

crops 

Growing Degree Days (thousands, summer) -10.22% 24.58% -9.32% 22.43% 

Growing Degree Days (thousands, winter) -19.26% -15.48% -21.32% -17.13% 

Annual Precipitation (100 mm)   7.84%    2.29% 8.06% 2.35% 

Chill Hours (100 hours, winter) 33.26%  21.04% 38.77% 24.52% 

Note: The percentage change of projected impacts of climate change on land use shares of 

perennial and annual crops are reported. These are calculated by multiplying the coefficients of 

average marginal effects and the difference between the average projected climate in 2031-2055 

and the average climate in 1981-2005.  
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Figure 1. Relationship between predicted land use shares and long-term climate variables. 

 

Note: These graphs are obtained by calculating the average marginal effects from the fractional 

multinomial logit regression at different intervals of degree days, precipitation, and chill hours. 

The gray cap represents the 95% confidence intervals. The x-axis has brackets representing the 

5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles 
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Appendix A: Tables and Figures 

 

Appendix Table A1. Definition of land cover types 

 

Category Crops CDL code and land cover type 

Perennial Almonds, 

pistachios, 

and nuts 

74 Pecans, 75 Almonds, 76 Walnuts, 204 Pistachios 

Grapes 69 Grapes 

Citrus, other 

subtropical 

fruit 

72 Citrus, 215 Avocados, 212 Oranges  

Other tree 

crops 

70 Christmas Trees, 71 Other Tree Crops, 211 Olives, 223 

Apricots, 66 Cherries, 67 Peaches, 68 Apples, 77 Pears, 210 

Prunes, 220 Plums 

Annual Alfalfa 36 Alfalfa 

Grains 4 Sorghum, 5 Soybeans, 6 Sunflowers, 12 Sweet Corn, 13 Pop or 

Orn Corn, 21 Barley, 22 Durum wheat, 23 Spring wheat, 24 

Winter wheat, 25 Other small grains, 26 Dbl Crop Win wht/Soy, 

27 Rye, 28 Oats, 29 Millet, 30 Speltz, 31 Canola, 32 Flaxseed, 

34 Rape seed, 35 Mustard, 38 Camelina, 39 Buckwheat, 51 

Chick Peas, 52 Lentils, 53 Peas, 225 Dbl Crop Win wht/corn, 

226 Dbl Crop Oats/Corn, 228 Dbl Crop Triticale/Corn, 230 Dbl 

Crop lettuce/Durum wht, 234 Dbl Crop Durum wht/Sorghum, 

235 Dbl Crop Barley/Sorghum, 236 Dbl Crop Winwht/Sorghum, 

237 Dbl Crop Barley/Corn, 238 Dbl Crop Winwht/Cotton, 239 

Dbl Crop Soy/Cotton, 240 Dbl Crop Soy/Oats, 241 Dbl Crop 

Corn/Soy, 254 Dbl Crop Barley/Soy 

Corn 1 Corn 

Cotton 2 Cotton 

Tomatoes 54 Tomatoes 

Safflower 33 Safflower 

Onions, 

garlic 

49 Onions, 208 Garlic 

Melons, 

squash, 

cucumbers 

48 Watermelon, 50 Cucumbers, 213 Honeydew, 209 

Cantaloupes, 222 Squash 

Rice 3 Rice 

Dry beans 42 Dry beans 

Potatoes 43 Potatoes 

Other 

vegetables, 

berries 

14 Mint, 41 Sugar beets, 46 Sweet Potatoes, 47 Misc 

Vegs&Fruit, 55 Caneberries, 57 Herbs, 206 Carrots, 207 

Asparagus, 214 Broccoli, 216 Peppers, 217 Pomegranates, 218 

Nectarines, 219 Greens, 220 Plums, 221 Strawberries, 227 

Lettuce, 229 Pumpkins, 242 Blueberries, 243 Cabbage, 244 
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Cauliflower, 245 Celery, 246 Radishes, 247 Turnips, 248 

Eggplants, 249 Gourds, 250 Cranberries 

Other field 

crops 

10 Peanuts, 11 Tobacco, 44 Other Crops, 45 Sugarcane, 56 Hops, 

205 Triticale, 224 Vetch, 232 Dbl Crop Lettuce/cotton, 233 Dbl 

Crop Lettuce/Barley 

Hay 37 Other hay/non Alfalfa, 58 Clover/Wildflowers, 59 Sod/Grass 

Seed, 60 Switchgrass 

Non-

cultivated 

crops 

Fallow/Idle 61 Fallow/Idle cropland 

Natural 

vegetation 

62 Pasture/Grass, 63 Forest, 64 Shrubland, 141 Deciduous 

Forest, 142 Evergreen Forest, 143 Mixed Forest, 152 Shrubland 
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Appendix Table A2. Agricultural land-use share, climate normals, soil attributes, use-value assessment, and year in the study region 

 

Variable 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 

Perennial 

crops share 

0.48 0.47 0.43 0.46 0.47 0.51 0.52 0.52 0.54 0.57 0.54 0.56 0.62 0.62 

Annual crops 

share 

0.38 0.33 0.42 0.36 0.36 0.34 0.32 0.28 0.28 0.28 0.29 0.30 0.27 0.26 

Non-

cultivated 

crops share 

0.14 0.20 0.15 0.18 0.17 0.15 0.16 0.20 0.18 0.15 0.17 0.14 0.11 0.12 

GDD 

(thousands, 

summer) 

2.08 2.14 2.08 2.08 2.07 2.07 2.07 2.08 2.08 2.09 2.09 2.10 2.10 2.11 

GDD 

(thousands, 

winter) 

0.98 1.01 0.98 0.97 0.97 0.97 0.97 0.98 0.99 0.99 1.00 0.99 1.00 1.00 

Precipitation 

(100 mm) 

3.63 2.91 3.49 3.43 3.47 3.51 3.42 3.41 3.39 3.46 3.53 3.51 3.55 3.44 

Chill Hours 

(100 hours, 

winter) 

10.06 10.04 10.02 10.07 9.98 10.00 9.88 9.70 9.54 9.37 9.25 9.14 9.03 8.92 

LCC12 0.56 0.53 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 

LCC34 0.40 0.44 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 

LCC5678 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 

Appraisal 

value of land 

(thousand 

dollars per 

acre) 

5.15 4.67 5.31 5.49 5.94 6.19 6.57 7.04 7.59 8.15 8.68 9.45 10.04 11.16 

Observations 48,932 21,037 48,579 49,051 48,972 48,906 48,966 48,982 48,977 48,971 49,020 48,976 49,029 49,082 
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Appendix Table A3. Crop-specific land-use shares by land quality and period in the study region. 

 

   High-Quality Low-Quality 

 All lands LCC12 LCC34 LCC5678 

 2008–

2014 

2015–

2021 

2008–

2014 

2015–

2021 

2008–

2014 

2015–

2021 

2008–

2014 

2015–

2021 

A. Land shares allocated to perennial crops (%) 

Almonds, 

pistachios, 

and nuts 

22.27 30.16 26.42 35.33 18.13 25.20 6.64 8.10 

Grapes 12.04 13.34 13.46 14.57 11.16 12.83 1.11 1.46 

Citrus, other 

subtropical 

fruit 

9.25 8.94 4.46 4.38 16.57 15.98 1.37 1.39 

Other tree 

crops 

4.25 4.25 4.10 4.35 4.75 4.38 1.15 1.56 

Total 

perennial 

crops 

47.81 56.68 48.45 58.62 50.63 58.39 10.27 12.52 

B. Land shares allocated to annual crops (%) 

Alfalfa 9.88 5.71 11.66 6.78 8.36 4.76 0.64 0.47 

Grains 10.24 8.29 11.81 9.52 8.98 7.34 1.22 0.74 

Corn 2.22 1.34 2.76 1.62 1.67 1.07 0.33 0.20 

Cotton 3.38 2.47 4.18 2.98 2.60 2.00 0.06 0.02 

Tomatoes 2.62 2.52 3.37 3.21 1.85 1.81 0.05 0.08 

Safflower 0.38 0.25 0.44 0.27 0.34 0.25 0.08 0.03 

Onions, garlic 0.41 0.44 0.52 0.51 0.30 0.39 0.001 0.007 

Melons, 

squash, 

cucumbers 

0.26 0.32 0.35 0.39 0.17 0.24 0.04 0.01 

Rice 3.57 3.30 0.99 0.81 4.56 4.26 29.40 28.18 

Dry beans 0.12 0.13 0.16 0.16 0.08 0.08 0.01 0.01 

Potatoes 0.16 0.12 0.17 0.13 0.16 0.13 0.01 0.007 

Other 

vegetables, 

berries 

1.72 1.82 1.87 2.03 1.62 1.65 0.57 0.67 

Other field 

crops 

0.25 0.39 0.26 0.40 0.25 0.40 0.17 0.07 

Hay 0.89 1.10 0.89 1.13 0.89 1.12 0.77 0.60 

Total annual 

crops 

36.11 28.21 39.44 29.96 31.83 25.51 33.34 31.11 

C. Non-cultivated land shares (%) 

Fallow/Idle 10.81 10.03 10.24 9.71 11.67 10.35 10.04 11.31 

Natural 

vegetation 

5.26 5.08 1.87 1.71 5.87 5.76 46.35 45.06 
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Total non-

cultivated 

crops 

16.08 

 

15.11 12.11 11.42 17.54 16.12 56.39 56.38 

Parcel size (in 

acre) 

77.14 77.09 69.77 69.48 76.92 77.25 182.24 181.08 

Number of 

parcels 

49,175 49,175 27,391 27,391 19,822 19,822 1,962 1,962 

Observations 314,432 343,122 174,492 191,057 127,421 138,333 12,519 13,732 

Notes: Mean value is reported. Land-use shares are formed by dividing each crop’s share within 

a parcel by its total cropland. A parcel from our sample may be associated with one or more 

crops. The natural vegetation consists of pastures/grass, deciduous and evergreen forest covers, 

and shrubland. 
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Appendix Table A4. Transition probabilities for crop choice 

 

 Crop in 2015–2021 

 Probability of continuing to grow the same crop 

  High-Quality Low-Quality 

Crop in 2008–2014 All Lands 

[1] 

LCC12 

[2] 

LCC34 

[3] 

LCC5678 

[4] 

A. Perennial crops     

Almonds, pistachios, and nuts 0.917*** 

(0.001) 

0.953*** 

(0.001) 

0.914*** 

(0.001) 

0.443*** 

(0.007) 

Grapes 0.625*** 

(0.002) 

0.675*** 

(0.002) 

0.608*** 

(0.003) 

0.098*** 

(0.005) 

Citrus, other subtropical fruit 0.369*** 

(0.002) 

0.349*** 

(0.002) 

0.423*** 

(0.003) 

0.101*** 

(0.007) 

Other tree crops 0.623*** 

(0.002) 

0.661*** 

(0.002) 

0.607*** 

(0.003) 

0.253*** 

(0.005) 

B. Annual crops     

Alfalfa 0.552*** 

(0.002) 

0.606*** 

(0.002) 

0.506*** 

(0.003) 

0.262*** 

(0.008) 

Grains 0.693*** 

(0.002) 

0.732*** 

(0.002) 

0.673*** 

(0.003) 

0.345*** 

(0.008) 

Corn 0.394*** 

(0.002) 

0.436*** 

(0.003) 

0.360*** 

(0.003) 

0.160*** 

(0.007) 

Cotton 0.308*** 

(0.002) 

0.323*** 

(0.002) 

0.268*** 

(0.003) 

0.059*** 

(0.005) 

Tomatoes 0.385*** 

(0.002) 

0.401*** 

(0.002) 

0.330*** 

(0.002) 

0.302*** 

(0.007) 

Safflower 0.169*** 

(0.001) 

0.174*** 

(0.002) 

0.150*** 

(0.002) 

0.104*** 

(0.006) 

Onions, garlic 0.163*** 

(0.001) 

0.180*** 

(0.002) 

0.156*** 

(0.002) 

0.033*** 

(0.005) 

Melons, squash, cucumbers 0.166*** 

(0.001) 

0.182*** 

(0.002) 

0.153*** 

(0.002) 

0.068*** 

(0.005) 

Rice 0.106*** 

(0.001) 

0.081*** 

(0.001) 

0.112*** 

(0.001) 

0.409*** 

(0.004) 

Dry beans 0.114*** 

(0.001) 

0.120*** 

(0.002) 

0.106*** 

(0.002) 

0.111*** 

(0.006) 

Potatoes 0.034*** 

(0.001) 

0.040*** 

(0.001) 

0.030*** 

(0.001) 

0.016*** 

(0.003) 

Other vegetables, berries 0.590*** 

(0.002) 

0.643*** 

(0.002) 

0.554*** 

(0.003) 

0.222*** 

(0.006) 

Other field crops 0.252*** 

(0.002) 

0.268*** 

(0.002) 

0.242*** 

(0.003) 

0.125*** 

(0.007) 

Hay 0.340*** 

(0.002) 

0.359*** 

(0.002) 

0.324*** 

(0.003) 

0.221*** 

(0.007) 

C. Non-cultivated crops     

Fallow/Idle 0.795*** 

(0.001) 

0.820*** 

(0.002) 

0.785*** 

(0.002) 

0.537*** 

(0.004) 

Natural vegetation 0.270*** 0.241*** 0.279*** 0.559*** 



38 
 

(0.002) (0.002) (0.003) (0.005) 

Observations 49,175 27,391 19,822 1,962 

Note:  

[1] The dependent variables are the binary crop choices grown on average from 2015 to 2021 in the 

Central Valley. 

[2] Average marginal effects are reported from the logit model conditional on an indicator of crops grown 

in the previous period (2008–2014), and current parcel-level characteristics such as climate variables that 

include degree-days (in summer and winter), total annual precipitation, and chill hours during winter and 

soil quality (an indicator of LCC34 and LCC5678). 

[3] Standard errors in parentheses are clustered at parcel-level and derived from delta-methods. 

[4] Level of significance: ***p < 0.01. 
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Appendix Table A5. Coefficients from fractional multinomial logit regression 

 Perennial crops Annual crops 

 [1] [2] [3] [4] 

Long-term climate normals from 27-year moving averages 

Growing Degree Days (thousands, summer) -47.924*** 

(5.074) 

-53.980*** 

(5.167) 

134.4173*** 

(4.963) 

138.557*** 

(5.009) 

Growing Degree Days (thousands, winter) 60.339*** 

(4.329) 

65.738*** 

(4.485) 

16.151*** 

(4.499) 

6.486*** 

(4.484) 

Annual Precipitation (100 mm) 4.952*** 

(0.088) 

4.679*** 

(0.089) 

3.363*** 

(0.077) 

3.428*** 

(0.078) 

Chill Hours (100 hours, winter) 2.851*** 

(0.247) 

2.407*** 

(0.253) 

1.280*** 

(0.207) 

1.666*** 

(0.207) 

Growing Degree Days square (thousands, 

summer) 

12.290*** 

(1.208) 

13.982*** 

(1.227) 

-30.021*** 

(1.184) 

-30.761*** 

(1.191) 

Growing Degree Days square (thousands, 

winter) 

-35.559*** 

(2.167) 

-38.734*** 

(2.228) 

-12.787*** 

(2.285) 

-9.063*** 

(2.267) 

Annual Precipitation square (100 mm) -0.333*** 

(0.008) 

-0.302*** 

(0.008) 

-0.156*** 

(0.007) 

-0.159*** 

(0.007) 

Chill Hours square (100 hours, winter) -0.197*** 

(0.013) 

-0.165*** 

(0.014) 

-0.074*** 

(0.011) 

-0.096*** 

(0.011) 

Soil Attributes     

Land Capability Class (class 3 or 4) -0.485*** 

(0.021) 

-0.441*** 

(0.021) 

-0.479*** 

(0.021) 

-0.496*** 

(0.021) 

Land Capability Class (class 5 through 8) -1.781*** 

(0.075) 

-1.631*** 

(0.077) 

-0.139*** 

(0.054) 

-0.228*** 

(0.055) 

Use-value assessment of agricultural land in California 

Appraisal value of land (dollars per acre)  0.056*** 

(0.002) 

 0.015*** 

(0.002) 

Parcel-level mean of time varying variables     

Growing Degree Days mean (thousands, 

summer) 

-6.056*** 

(0.674) 

-5.867*** 

(0.707) 

-39.029*** 

(0.785) 

-40.157*** 

(0.795) 

Growing Degree Days mean (thousands, 

winter) 

28.397*** 

(1.206) 

26.976*** 

(1.251) 

70.887*** 

(1.417) 

72.688*** 

(1.424) 

Annual Precipitation mean (100 mm) -1.632*** 

(0.040) 

-1.672*** 

(0.041) 

-1.572*** 

(0.042) 

-1.624*** 

(0.043) 

Chill Hours mean (100 hours, winter) 1.945*** 

(0.054) 

1.617*** 

(0.057) 

2.916*** 

(0.062) 

2.921*** 

(0.063) 

Mean of appraisal value of land (dollars per 

acre) 

 0.019*** 

(0.003) 

 -0.034*** 

(0.002) 

Mean of dependent variable 0.521 0.524 0.325 0.320 

Log Likelihood -571942.54 -527844.16 -571942.54 -527844.16 

Number of parcels 49,175 49,175 49,175 49,175 

Observations 685,716 657,554 685,716 657,554 

Notes:  

[1] The dependent variable is agricultural land-use shares (perennial crops are represented in columns 1–

2, and annual crops are represented in columns 3–4), with non-cultivated crops being the base case. 

[2] Standard errors in parentheses are clustered at the parcel level. Level of significance: ***p < 0.01. 
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Appendix Table A6. Average marginal effects from fractional multinomial logit regression: The 

share of perennial crops is divided into almonds, pistachios, nuts, and other tree crops 

 Almonds, pistachios, and 

nuts 

Other tree 

crops 

Annual 

crops 

 [1] [2] [3] 

Long-term climate normals from 27-year moving averages 
Growing Degree Days (thousands, 

summer) 
0.048 

(0.049) 

-0.488*** 

(0.044) 

1.098*** 

(0.051) 
Growing Degree Days (thousands, 

winter) 
-1.325*** 

(0.062) 

0.335*** 

(0.047) 

-0.274*** 

(0.063) 
Annual Precipitation (100 mm) -0.156*** 

(0.005) 

0.348*** 

(0.005) 

0.063*** 

(0.004) 
Chill Hours (100 hours, winter) -0.113*** 

(0.002) 

-0.013*** 

(0.002) 

0.078*** 

(0.002) 

Soil Attributes    
Land Capability Class (class 3 or 4) -0.061*** 

(0.003) 

0.035*** 

(0.002) 

-0.021*** 

(0.003) 
Land Capability Class (class 5 

through 8) 
-0.306*** 

(0.014) 

0.030** 

(0.014) 

0.185*** 

(0.011) 

Use-value assessment of agricultural land in California 
Appraisal value of land (dollars per 

acre) 
0.006*** 

(0.0002) 

0.002*** 

(0.0001) 

-0.005*** 

(0.0002) 
Mean of dependent variable 0.264 0.261 0.319 
Log Likelihood -717262.23 -717262.23 -717262.23 
Number of parcels 49,175 49,175 49,175 
Observations 658,830 658,830 658,830 

Notes:  

[1] The dependent variable is agricultural land-use shares (perennial crops are represented in columns 1–

2, and annual crops are represented in columns 3), with non-cultivated crops being the base case. 

[2] The explanatory variable includes degree-days, precipitation, and chill hours during winter (and their 

square terms), and indicators of LCC34 and LCC5678. 

[3] We follow Chamberlain-Mundlak’s approach to estimate fixed effects using the parcel-level averages 

of each climate and non-climate variable. 

[4] Standard errors in parentheses are derived from delta-method and are clustered at the parcel level.  

[5] Level of significance: ***p < 0.01 and **p < 0.05. 
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Appendix Table A7. Predicted changes in climate variables compared to the average during 

1981–2005. 

 

 SSP45  SSP585 

 1981–

2005 

(1) 

2031–

2055 

(2) 

Difference 

(2) - (1) 

2031–

2055 

(3) 

Difference 

(3) - (1) 

Growing Degree Days (thousands, 

summer) 

2.048 2.254 0.206 2.236 0.188 

Growing Degree Days (thousands, 

winter) 

1.122 1.413 0.291 1.444 0.322 

Annual Precipitation (100 mm) 3.801 4.195 0.394 4.206 0.405 

Chill Hours (100 hours, winter) 7.357 4.514 -2.843 4.043 -3.314 

Note: Mean values are reported. 
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Appendix Figure A1: Selected parcels from 2008 to 2021 in the Central Valley of California. 

 

Notes: The figure shows the selected parcels as dots. The county boundaries are shown in gray 

lines.  
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Appendix Figure A2. Cropland acreage trends in CDL and NASS datasets from 2008 to 2021. 

 

Note: We present a time series of total cropland from perennial and annual crops acreage from 

the CDL and harvested acres from the NASS datasets on the left. On the right, we present the 

time series of detrended CDL cropland area and detrended time series of NASS cropland area. 
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Appendix Figure A3: Trends in the long-term climate variables. 

 

Notes: We aggregated the long-term (27-years moving average) climate variables and reported 

the mean values by year. 
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Appendix Figure A4a: Scatter plot for the correlation between the share of perennial crops and 

climate variables. 

 

Notes: The dots represent the share of perennial crops, and the dark line represents the quadratic 

fit values. The farmlands are located in 11 counties of the Central Valley. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



46 
 

 
Appendix Figure A4b: Scatter plot for the correlation between the share of annual crops and 

climate variables. 

 

Notes: The dots represent the share of perennial crops, and the dark line represents the quadratic 

fit values. The farmlands are located in 11 counties of the Central Valley. The correlation 

between the long-term accumulated chill hours during winter and the share of annual crops has 

no agronomic significance, we present them only to finish the graphs.  
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Appendix B: Variable Construction 

 

Agricultural Land use share:  

 

Mathematically, the share of land use 𝑆 of parcel 𝑖 for each crop type 𝑘 ∈ 𝐾 =

{𝑝𝑒𝑟𝑒𝑛𝑛𝑖𝑎𝑙, 𝑎𝑛𝑛𝑢𝑎𝑙, 𝑛𝑜𝑛𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑡𝑒𝑑} at time 𝑡 ∈ {2008, … ,2021} is calculated as: 𝑆𝑖𝑡
𝑘 =

𝑙𝑖𝑡
𝑘

∑ 𝑙𝑖𝑡
𝑘

𝑘
 

where 𝑙𝑖𝑡
𝑘  is the land in acres of parcel 𝑖 for crop type 𝑘 at time 𝑡. The value of land share can 

vary between zero and one. 

 

Growing Degree Days: 

Following the previous literature, we calculate growing degree days as follows:  

 ∑ 𝐺𝐷𝐷(𝑇𝑚𝑒𝑎𝑛,𝑑)𝐷
𝑑 = {

0, 𝑖𝑓 𝑇𝑚𝑒𝑎𝑛,𝑑 ≤ 8

𝑇𝑚𝑒𝑎𝑛,𝑑 − 8, 𝑖𝑓 8 < 𝑇𝑚𝑒𝑎𝑛,𝑑 ≤ 32

0, 𝑖𝑓 𝑇𝑚𝑒𝑎𝑛,𝑑 > 32
  

 where 𝑇𝑚𝑒𝑎𝑛,𝑑 is the mean daily temperature in degree Celsius. The subscript, d indicates the 

days of different seasons. Winter starts on November 1 and ends on February 28 of the next year, 

and summer starts on April 1 and ends on August 31. 

 

Chill Hours: 

We follow Jackson et al., (2012) to calculate the daily chill hours using the daily minimum 

temperature (𝑡𝑚𝑖𝑛), mean temperature (𝑡𝑎𝑣𝑔), daily maximum temperature (𝑡𝑚𝑎𝑥), and the 

reference temperature (𝑡𝑟𝑒𝑓 = 7.22 degrees Celsius). The daily chill hour for parcel 𝑖 in time 𝑡 is 

calculated as follows: 

𝐶ℎ𝑖𝑙𝑙ℎ𝑜𝑢𝑟𝑖𝑡 = 0 𝑖𝑓 𝑡𝑟𝑒𝑓 < 𝑡𝑚𝑖𝑛 or 

𝐶ℎ𝑖𝑙𝑙𝐻𝑜𝑢𝑟𝑖𝑡 = 12 ∗ (
𝑡𝑟𝑒𝑓−𝑡𝑚𝑖𝑛

𝑡𝑎𝑣𝑔−𝑡𝑚𝑖𝑛
)  𝑖𝑓 𝑡𝑟𝑒𝑓 < 𝑡𝑎𝑣𝑔 or 

𝐶ℎ𝑖𝑙𝑙𝐻𝑜𝑢𝑟𝑖𝑡 = 12 + 12 ∗ (
𝑡𝑟𝑒𝑓−𝑡𝑎𝑣𝑔

𝑡𝑚𝑎𝑥−𝑡𝑎𝑣𝑔
)  𝑖𝑓 𝑡𝑟𝑒𝑓 > 𝑡𝑎𝑣𝑔 or 

𝐶ℎ𝑖𝑙𝑙𝐻𝑜𝑢𝑟𝑖𝑡 = 24 𝑖𝑓 𝑡𝑟𝑒𝑓 > 𝑡𝑚𝑎𝑥. 

We then sum up the daily chill hours during the winter (November through February) in a given 

year. We calculate the 27-year normal for chill hours during winter for our analysis. 

 

 

 


