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Optimal groundwater management to mitigate water table decline and land subsidence

impacts on Groundwater-Dependent Ecosystems

Nelson Ndakolute Ndahangwapo 2, Djiby Racine Thiam ®, Ariel Dinar ¢
ab School of Economics, University of Cape Town, South Africa.

¢ School of Public Policy, University of California, Riverside, USA.

Abstract

Rising surface water scarcity has intensified groundwater extraction, which drives land
subsidence (LS) and, in turn, damages groundwater-dependent ecosystems (GDEs). However,
the LS-GDEs relationship remains largely underexplored in the economic literature. In this
paper, we develop a dynamic economic optimization model that explicitly incorporates LS
within a GDEs (LS-GDEs) framework and evaluate alternative policy instruments aimed at
curbing overexploitation to mitigate the negative effects of groundwater depletion. These
instruments include quota systems, taxes on land sinking and on aquifer storage loss, as well
as packaging and sequencing of taxes and quotas. Using data from a major aquifer in South
Africa, we calibrate the model and assess the private and social welfare implications. Our
results show that taxes on land sinking and aquifer storage loss significantly influence
extraction behaviour and raise water table levels, thereby enhancing social welfare. Among
the policies, quotas yield the lowest private net benefits to farmers (0.1395 million USD),
while the baseline scenario generates the highest. The LS—GDEs and no policy intervention
scenario delivers the second-highest private net benefits. Packaging and sequencing of policy
interventions provides private net benefits equal to those under the tax policy. Overall, these
findings highlight the importance of designing policies that account for LS-driven impacts to

safeguard GDEs’ health.

Keywords: Land subsidence; Groundwater dependend ecosystems; Groundwater over-
extraction; Aquifer system storage capacity; Taxes; Quotas; Packaging and sequencing;
Social benefits; Dendron aquifer; South Africa.
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1. Introduction
Groundwater-dependent ecosystems (GDEs) are ecological systems that rely on groundwater
for some or all of their water needs (Rohde et al., 2020). These include springs, wetlands,
rivers and streams, lakes, riparian forests, caves, and lagoons (Klove et al., 2011a). The well-
being of human societies is intrinsically linked to the health of these ecosystems. For example,
GDEs provide essential ecosystem services, including flood mitigation, water purification,
erosion control, groundwater recharge, and natural irrigation (Klove et al., 2011b). Eamus et
al. (2006) categorize GDEs into three types: (1) fully groundwater-dependent ecosystems
(e.g., karsts, aquifers, and cave ecosystems), (2) those dependent on the surface expression
of groundwater (e.g., base-flow rivers, streams, wetlands, and springs), and (3) ecosystems
reliant on subsurface groundwater within rooting depths (e.g., woodlands and riparian
forests). A large share of the global economic value of ecosystem services, estimated at 125
to145 trillion US dollars annually as of 2014, is derived from groundwater-related ecosystems
(Costanza et al., 2014). In addition, the global mean values (international dollars/ha/year) of
ecosystem services for water-related ecosystems were estimated at 2,398 for coastal
systems, 6,791 for mangroves, 612 for inland wetlands, and 364 for rivers and lakes, etc.
(Brander et al., 2024). Yet, excessive groundwater extraction has led to severe environmental
and economic losses, with damages estimated at 4.3 to 20.2 trillion US dollars per year
(Costanza et al., 2014). One critical consequence of excessive groundwater abstraction is the
lowering of the water table, which threatens GDEs (Eamus et al., 2006). When the water table
declines beyond the reach of plant roots, terrestrial ecosystems lose access to groundwater,

leading to habitat degradation (Rohde et al., 2020).

Groundwater depletion also reduces streamflow in rivers and springs, negatively affecting
aquatic biodiversity and water availability (Rohde et al., 2020). Beyond the negative effects
on ecosystem services, continuous groundwater overextraction leads to land subsidence (LS).
LS refers to the process where the ground surface sinks due to the compaction of subsurface
materials, often caused by the removal of groundwater among others. In addition, LS
progresses in two phases: (1) elastic compaction, which is reversible, and (2) inelastic
compaction, which is irreversible (Esteban et al. 2024; Ndahangwapo et al., 2024). The
transition to the inelastic phase signifies permanent damage, reducing groundwater

availability and degrading GDEs. LS reduces aquifer storage capacity, exacerbating
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groundwater depletion impacts and leading to ecosystem stress. Ecosystem stress arises not
only from reduced water availability for consumption, but also from LS—related impacts such
as deteriorating water quality, altered hydraulic flows, and other associated impacts (Dinar et
al., 2021). The magnitude and severity of the LS damages depend on a combination of physical
and environmental factors: (i) depth to the water table, (ii) groundwater pressure, (iii)

groundwater flux, and (iv) groundwater quality (Clifton & Evans, 2001).%

Economic research on groundwater regulation has largely focused on depth externalities
while overlooking GDE health and LS (Gisser & Sanchez, 1980; Brill & Burness, 1994; Guilfoos
et al., 2013; de Frutos Cachorro et al., 2014; Tomini, 2014; Allen & Gisser, 1984; Brown &
Deacon, 1972). Studies on LS and aquifer storage loss (Dinar et al., 2020; Esteban et al., 2024;
Ndahangwapo et al., 2024) have not accounted for GDEs. Meanwhile, studies on GDE
damages from groundwater depletion (Esteban & Albiac, 2011; Roumasset & Wada, 2013;
Esteban & Dinar, 2016; Esteban et al., 2021) have not considered the impact of LS on GDE
health. This disparity in the literature leads to underestimates of the impact of
overexploitation of groundwater and bias in the value of the suggested policy interventions.
This paper bridges these gaps by analyzing the interdependence between LS, aquifer storage
loss, and GDE health. We offer the first economic study that explicitly links land subsidence
with GDE health and explores the extent to which changes in groundwater use may affect

their dynamics.

To quantify these relationships, we develop a GDE health status function that links GDE health
with both the level of water table height and land subsidence. Several papers have defined
ecosystem health as a function of the depth to the water table (Esteban et al., 2021; Esteban
and Dinar, 2016; Eamus et al., 2006; Gutrich et al., 2016). Alternatively, GDEs’ health can be
expressed as a function of the water table height (Esteban et al., 2021). There are two distinct
effects in our analysis. First, groundwater extraction affects aquifer reserve which affects in

turn the state of the ecosystem health. When the aquifer is full, the ecosystem remains in its

1 Groundwater pressure refers to the force per unit area exerted by water within a confined aquifer, often
related to the height of the water column above a reference point. Groundwater flux refers to the rate at which
groundwater flows through a unit area of porous medium, usually expressed as volume per time per area.
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pristine state, but once the water table drops to the aquifer bottom, the ecosystem collapses.
Reduction of the water table height beyond a certain threshold (denoted H,,) triggers the
deterioration of the health status of the GDEs. From H,,, the state of the GDEs enters the
unhealthy phase. Second, when the water table height surpasses another threshold, (denoted
H_) this creates LS from elastic compaction alone (severe unhealthy phase). During the severe
unhealthy phase, the ecosystem suffers loss of biodiversity, collapse of vegetation cover,
permanent aquifer damage, and breakdown of groundwater—surface water linkages. To
simplify the analysis, we assume that threshold H,, is reached first, followed by a second
threshold H., then, a third threshold H; can be reached. The third threshold marks the
beginning of irreversible land subsidence (inelastic compaction). This means, land subsidence
is reached within the interval of the unhealthy state of the ecosystem health. The damage
inflicted on the ecosystem health caused by land subsidence can therefore be seen as a

cumulative effect.

We model GDE health over four states: a healthy phase, an unhealthy phase, a severe
unhealthy phase, and a critical unhealthy phase. We follow Scheffer and Carpenter (2003) and
Crepin et al (2012) in distinguishing between the healthy and unhealthy phases and the extent
to which ecosystem changes are triggered by external conditions. The healthy phase
corresponds to the state where GDEs are fully functional, and all ecological and hydrological
processes are functioning in a stable, undisturbed, and ecologically ideal state, supporting
long-term sustainability without intervention. Ecological processes are the natural
interactions and functions that sustain ecosystems and the organisms within them. Phase 2,
the unhealthy phase, reflects a state where some ecological processes are not efficient or
disrupted. During the severe unhealthy phase, GDEs experience major or severe functional
impairment, with key or essential ecological processes significantly compromised. Phase 4,
the critical unhealthy phase, represents a state in which essential ecological processes have
largely ceased or critically impaired, indicating that the GDE is on the verge of complete

failure.

The ecosystem state in our study is represented by a function (GDEsHS(H, LS(H))) that links
the health of the ecosystem (GDEsHS) with both the level of water in the aquifer (H) and the

level of cumulative land subsidence (LS(H)). The function represents how a decrease in the
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water table level affects the functioning of depending aquatic ecosystems. Cumulative land
subsidence represents the net amount of LS that has occurred since surpassing the critical
threshold H, up to and including the current time. The health of the GDEs decreases as the
water table height decreases and cumulative LS increases. The GDEs’ health status (GDEsHS,
ranging from 0 to 1) functional represents the condition or level of health of the GDEs. A value
equal to 1 implies that the health of the GDEs is in its pristine state. A reduction in the value
of the health function beyond a certain threshold (denoted &) triggers the deterioration of
the health status of the GDEs. From §, the state of the GDEs enters the unhealthy phase.
Second, when the value of the health function falls below another threshold, (denoted p) the
health status enters the severe unhealthy phase. The last health threshold, y, marks the
beginning of the critical unhealthy phase. A higher level or status of ecosystem health
provides a higher level or amount of ecosystem services compared to a lower level of

ecosystem health. The stated ecosystem function is described in Figure 1.

Our model incorporates several policy intervention mechanisms, such as taxes and quotas
that are widely used to correct groundwater overextraction externalities (Brown & Deacon,
1972; Ndahangwapo et al., 2024; Dinar et al., 2020). A Pigouvian tax charged per unit of land
sinking at every time step or quotas to limit water extraction are compared. The paper
evaluates the effectiveness of these regulatory tools and their packaging and sequencing
ability to mitigate LS-induced damages to GDEs. We compare three policy scenarios: (1) taxes,
(2) quotas, setting extraction limits to prevent excessive groundwater withdrawal and
preserve GDEs health, and (3) combined approach, a hybrid of quotas and taxes, considering
their optimal sequencing for policy effectiveness. Such analysis provides insights into which

policy mechanisms can best align private extraction incentives with social welfare objectives.

The remainder of the paper is structured as follows: Section 2 presents a review of the
relevant literature. Section 3 introduces the dynamic optimization model for groundwater
management, outlining the effects of LS and policy interventions. Section 4 details the
empirical approach, while Section 5 discusses the study area and data. Section 6 discusses the
results and policy implications. Section 7 concludes with recommendations for sustainable

groundwater management.
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2. Literature review
Various institutional arrangements and policy instruments, such as taxes and quotas, have
been proposed to regulate groundwater use and enhance social welfare (Brah and Jones,
1978; Tang, 1991). Some studies have focused on quantifying LS to better understand its
extent and address its associated negative externalities. This review synthesizes previous
research on LS, the health of groundwater-dependent ecosystems (GDEs), and groundwater

overextraction, as well as their interconnections.

Systematic reviews by Herrera-Garcia et al. (2021) and Bagheri-Gavkosh et al. (2021) highlight
the global scope of land subsidence. Herrera-Garcia et al. identified 200 cases of
groundwater-related subsidence across 34 countries, while Bagheri-Gavkosh et al.
documented 290 subsidence cases in 41 countries, with around 60% attributable to
groundwater pumping and 41% linked specifically to agricultural extraction. Herrera-Garcia
et al. estimate that subsidence currently affects approximately 8% of the Earth’s land surface,
with some of the hugely affected regions being the Yazd-Ardakan aquifer and the California’s
Central Valley. Subsidence also threatens urban areas: their analysis suggests that 19% of the
global population and 12% of global GDP are at high or very high potential risk, although only
1.6% of land is directly exposed. In response to these risks, the Indonesian government has
announced plans to relocate the capital city to Borneo Island, more than 1,000 km inland

(Cobourn, 2025).

Dinar et al. (2021) and Josset et al. (2024) developed indexes to measure the impacts of land
subsidence, offering standardized approaches to monitor and inform policy decisions. Josset
et al. proposed a multi-dimensional Land Subsidence Geospatial Risk Index (LSGRI), linking
subsidence severity with direct damages to infrastructure and indirect damages from
increased flood risk. Hu et al. (2013) combined physical modelling with a simplified calculation
of monetary damages from subsidence, providing an initial quantitative assessment. Wade et
al. (2018) examined the economic costs of LS caused by groundwater pumping by estimating
the marginal damages from pumping in Virginia’s southern Chesapeake Bay region. Shrestha
et al. (2017) provided the first assessment of LS in Kathmandu Valley, Nepal, using a fully
calibrated coupled surface-subsurface groundwater model. Their simulations showed that

deep aquifer compaction from excessive groundwater abstraction drives LS. Managed aquifer
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recharge has been applied as a mitigation measure, successfully limiting subsidence in Las

Vegas and Shanghai, although it proved less effective in Mexico City (Seidl et al., 2024).

Dinar et al. (2020) examined the use of Pigouvian taxes to internalize the external costs of
land subsidence and aquifer storage loss caused by groundwater extraction. They showed
that targeted taxation could prevent further compaction and water scarcity while aligning
private extraction with socially optimal outcomes. Esteban et al. (2024) and Ndahangwapo et
al. (2024) further examined the use of Pigouvian taxes on LS and aquifer storage capacity loss,
showing that such taxes can significantly influence groundwater withdrawals, maintain higher
water table levels, and prevent water scarcity. Ndahangwapo et al. (2024) also evaluated
qguota systems and combined tax-quota approaches, finding that while taxes alone reduce
extractions, combining instruments through packaging and sequencing generates higher

social benefits.

Ecosystem-related damages from groundwater depletion have been analysed in several
studies. Roumasset and Wada (2013) demonstrated that payments for ecosystem services
(PES) could incentivize groundwater conservation. Esteban and Dinar (2016) incorporated an
ecosystem health function into groundwater models, showing that optimal extraction paths
must reflect the economic value of ecosystem services. Esteban et al. (2021) extended this
work by modelling regime shifts in GDEs, identifying tipping points beyond which ecosystem
degradation becomes irreversible. Rohde et al. (2019) highlighted the importance of setting
groundwater thresholds to secure environmental water needs for GDEs. Addressing data gaps
in linking groundwater conditions to GDEs’ health, they used geophysics alongside biological
indicators of groundwater-dependent vegetation to assess GDEs’ health. Their results showed
that vegetation health indicators correlate strongly with subsurface hydrological conditions,
offering a transdisciplinary framework that integrates hydrological, geophysical, and
ecological data to improve monitoring and groundwater management. Esteban and Albiac
(2011) proposed Pigouvian taxes based on ecosystem damage per unit of groundwater

depletion, illustrating the role of economic instruments in preserving ecosystem health.

Brown and Deacon (1972) formulated a tax on groundwater pumping, showing that higher
extraction costs encourage conservation. Maddock and Haimes (1975) developed a quadratic
linear programming model combining taxes with quotas, with taxes applied to excess
extraction and rebates for low extraction. Bredehoeft and Young (1970) compared taxes and

7
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quotas in a hypothetical basin, observing similar outcomes with only minor welfare
improvements. Feinerman and Knapp (1983) reported that while users preferred quotas, the
social welfare gains were limited. Weitzman (1974) highlighted that under uncertainty,
neither taxes nor quotas alone achieve first-best outcomes. Choi and Feinerman (1995)
applied these concepts to groundwater pollution, and Brozovic et al. (2004) found that quotas
could achieve higher reductions under certain conditions. Duke et al. (2020) compared six tax
policies using a coupled hydrologic-economic model, finding that social efficiency and

earnings varied despite similar reductions in withdrawals.

To overcome the limitations of single instruments, studies have examined combined
approaches. Maddock and Haimes (1975) showed that taxing excess extraction while
subsidizing low extraction effectively reduced costs and promoted conservation. Lenouvel et
al. (2011) developed a target-based mechanism combining ambient taxes with individual
quotas, which reduced withdrawals in experiments despite informational limitations. Esteban
and Dinar (2013) demonstrated in the Western La Mancha aquifer that sequencing tax and
guota interventions can achieve more sustainable management than single policies, although
determining optimal tax rates remains challenging under heterogeneous conditions. Costello
and Karp (2004) found that dynamic taxes provide better regulatory information, enhancing

social welfare compared to quotas.

Equity considerations are also crucial. Feinerman (1988) highlighted the need for stakeholder
consensus to ensure fair adoption of groundwater policies. Sorensen and Herbertsson (1998)
compared Pigouvian and flat-rate taxes, finding the former more efficient but challenging to

implement due to information gaps.

Overall, the literature indicates that while taxes and quotas are effective for groundwater
management, combining instruments and adapting policies over time generally yields
superior social outcomes. Building on these insights, the present study examines both
individual and combined policy instruments in mitigating groundwater externalities, with a
particular focus on induced LS and its effects on GDE health. We develop a GDE health status
function linking ecosystem condition with land subsidence to inform taxes and quotas

designed to preserve ecosystem integrity and ensure sustainable groundwater use.
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3. The model
We consider an aquifer system situated beneath a specific agricultural region, which is
managed under the oversight of a regulatory authority. It is assumed, without loss of
generality that all farmers in this region rely exclusively on groundwater extraction via water
pumps, as no alternative water sources are available for irrigation purposes. Drawing on the
framework established by Gisser and Sanchez (1980), the demand for irrigation water is

expressed by Equation (1) below.

W(t)=g+kP(t), g>0k<O0. (1)
The function W (t) represents the groundwater extraction rate at time t, g and k are
parameters of the demand function, and P(t) is the price of irrigation water. The inverse

demand function corresponding to Equation (1) is given by Equation (2) below.?

_w_g
P = Pl (2)
As a standard in the literature, farmers’ total revenue from groundwater use for irrigation is
given by Equation (3) below.

w2  gw

fy POW)dw =7 — 2%

(3)
The cost of groundwater extraction is defined by the function P = C, + C;H, where C, > 0
represents fixed extraction costs and C; < 0 denotes marginal extraction costs. The depth to
the water table is given by S; — H, with §; indicating the surface elevation of the irrigated field

and H representing the water table height. Consequently, the private benefits derived from

groundwater use are given by total revenue minus total extraction costs. The dynamics of
groundwater are described by H = ﬁ [R— (1 —a)W], 0 <t< +o0.Where A is the area of
the aquifer system (m?), S is the storativity coefficient (dimensionless), R is the natural

recharge rate (m3/year), and 0 < a < 1 represents the percolation return flow coefficient

(dimensionless). Additionally, the change in water table height due to pumping is expressed

as (Koundouri, 2004) AH = ﬁ [R—(1—-a)W].

In this study, we model GDEs’ health as a function of water table height coupled with a

measure of LS extent, where a decline in water table height corresponds to a decline in GDEs’

2 Omitting the operator t for simplicity (Ndahangwapo et al. (2024)).
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health. A decrease in the water table height and a simultaneous increase in LS extent (when
subsidence is occurring) jointly intensify stress on the aquifer system, thereby further reduce
the health of the GDEs. We assume that the aquifer is at full capacity when the water table
height equals the surface elevation, that is, S; = H (Esteban et al., 2021). A full aquifer implies
that the GDEs’ health is in its pristine state. Building on the framework proposed by Esteban
et al. (2021), we define the GDEs’ health over four distinct phases, as defined in the
Introduction section (healthy, unhealthy, severe unhealthy, and critical unhealthy). The figure

below illustrates the GDEs’ health status (GDEsHS) given in Equation (4).

= a
72 o
-
=
~—’
v
=
= P
T
vV
O
SI=H Hu Hc l_IT

Figure 1. GDEs health status evolution.

We define three GDEs’ health critical thresholds (or tipping points) that are governing the
GDEs’ health across the four phases: 0 <y < p < § < 1. The parameter § marks the critical
threshold beyond which ecosystem health switches into the unhealthy phase (p < Health <
4), driven solely by a falling water table. Beyond p, ecosystem health enters the severe
unhealthy phase (y < Health < p), where both water table decline and elastic land
subsidence contribute to the ecosystem health stress. When the health falls below y, the
system enters the critical unhealthy phase (0 < Health < y), driven by a falling water table,
both elastic and inelastic LS, and aquifer storage capacity loss. We assume that the health of
the GDEs reaches zero when the water table falls to the aquifer bottom (H = Hyg), regardless

of the amount of LS experienced at that time.
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In addition, we define three critical thresholds for the water table height: H; < H. < H,,. The
threshold H, marks the point beyond which the ecosystem health enters the unhealthy
phase; that is, the healthy phase occurs when H > H,;,, and the unhealthy phase begins when
H < H,. When the water table falls below H_, elastic compaction begins, marking the start
of the severe unhealthy phase. Thus, the unhealthy phase correspondsto H,. < H < H,;, and
the severe unhealthy phase begins when H < H_. Similarly, the threshold H; represents the
point below which inelastic compaction begins. Therefore, the critical unhealthy phase begins
when H < Hp, and continues until the aquifer bottom Hj is reached. As a result, by modifying
the evolution of the ecosystem health, dependent solely on the depth to water table, as
suggested by Esteban et al. (2021), we define the GDEs’ health status, GDEsHS(H,LS(H)) as

presented in Equation (4) below (construction outlined in Appendix 1).

((56;_11)2'(51_1‘1)24'1 ifHZHu,
1—Hu
L (H—H.)? +p if H, < H < Hy,
GDEsHS(H, LS(H)) = { Hu=Ho) “
(Zz )yz (H —LS(H) — Hr + LS(Hy))? +y ifHp <H <H,,
(@ (H — LS(H) — Hy + LS(Hp))? i H < Hy.
T

where d. = H, — LS(H,) — Hy + LS(Hy), dy = Hr — LS(Hy) — Hg + LS(Hg), LS(H.) =
LS(H(t.)),LS(Hy) = LS(H(tr)),and LS(Hg) = LS(H(tg)). The function, LS(H) = —n - ¢ -
b-y - (H — H,), represents the cumulative LS (in m). The parametersn, b, Y, and € represent
the density of water, the aquifer system’s thickness, the aquifer system compressibility, and
the acceleration due to gravity, respectively. Following Esteban et al. (2021), we further
assume that at each critical threshold for the water table, the GDEs health status functional
is continuous, taking the same value from both the left and right sides of the function. Phase
one function is a downward opening parabola, where the GDEs’ health status decreases from
1 towards § as H reduces. Phase two function is an upward opening parabola, where the

GDEs’ health status decreases from & towards p as H reduces.

In phase 3, GDEs’ health stress is driven by a decreasing H and reversible LS(H) = 0 (see
Appendix 1). The GDEs’ health status decreases from p towards y as H reduces and LS(H)

increases. In phase 4, GDEs’ health decreases from y to 0 as H reduces and LS(H) increases.

11



328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359

Geological differences and withdrawal patterns explain variations in subsidence magnitude
and spatial pattern (Zhang et al., 2007; Ha et al., 2021). Therefore, we assume one uniform
aquifer system with evenly spread wells and effects. Finally, 6 is a scaling parameter that
translates GDEs’ health into a monetary value of the ecosystem services. Thus, 8 is defined as
the maximum total economic value of ecosystem services when the GDEs are in a pristine
health state. The model application is expected to serve as a robust tool for decision-making,
providing quantitative insights into the interplay between groundwater use, LS, and
ecosystem resilience, and helping identify policy options that achieve sustainable

groundwater management while minimizing welfare and ecological risks.

4. Policy instruments
As previously stated, we examine several policy instruments: quotas and taxes. These policy
instruments are chosen because they target different aspects of groundwater management,
with quotas directly limiting the quantity of water extracted, while taxes provide economic
incentives to reduce overuse. We also examine the performance of their jointimplementation
(packaging and sequencing) in affecting groundwater use and the health of GDEs. Testing
multiple policy instruments allows us to identify which poicy instruments, individually or in
combination, are most effective in sustaining both water resources and dependent

ecosystems.

4.1 Implementation of taxes

Taxes will serve as the first policy intervention to be considered. A Pigouvian tax is aplicable
when damages can be measured. Hence, taxing each unit of LS is reasonable. Although an
alternative would be to tax the deterioration of GDEs’ health directly, the monitoring cost of
ecological health is likely much higher than the benefit of internalizing extraction
externalities. By contrast, LS can be monitored relatively cheaply through satellite-based
remote sensing and observation wells. The function LS (W) represents the rate at which the
land is sinking (m) due to pumping as suggested by Ndahangwapo et al. (2024): LS(W) =
—n-&-b-y-AH. Wheren, b, 1, and ¢ represent the density of water, the aquifer system’s
thickness, the aquifer system compressibility, and the acceleration due to gravity,

respectively.
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Taxing AH (change in water table height due to pumping) instead would be less practical
because its accurate measurement across space and time is costly and requires dense
monitoring networks. Consequently, phases one and two will not be taxed since LS does not
occur during these stages. Only phases three and four, where LS occurs, will be subject to
taxation. Following Ndahangwapo et al. (2024), the parameter § represents the Pigouvian tax

charged per meter of land sinking (in m). In addition, the regulator imposes a Pigouvian tax
on each cubic meter of aquifer storage capacity lost, defined by ¢(W,H) = % - % —(Cy +

C,H) (in $/m3). The volume of storage capacity lost due to inelastic compaction from
groundwater pumping is calculated following Ndahangwapo et al. (2024).

p = —ASYbrn(1 —n+n,)AH. (5)
where, 1 denotes aquifer compressibility (ms?/kg), 7 the unit weight of water (N/m3), n
the aquifer porosity (dimensionless), and n,, the moisture content in the unsaturated zone
(fraction of total volume, dimensionless). Based on these formulations, farmers maximize

private welfare subject to the tax policy, which leads to the following welfare maximization

problem.
fu gW 5—1
MaXy g ¢t tr f lt[— — =~ G+ CHYW + 0(—7~7 - (S = H)? + 1)]dt
0 ( Hu)
+f e i [— — (Co + CLHYW + 9((H e (H = H.)? + p)ldt
v W2 gWw 5
_a MV ogWw
+L e ==~ G+ GHYW + 6((dc)2 (H—LS(H) — Hy + LS(H;))? +7)
—B - LS(W)]dt
+fme—if[W—2—ﬂ—(C + CHYW + 6( -(H — LS(H) — Hg + LS(Hg))?)
: 2k k0T (dT)Z ? ?
subject to
(—[R-QA-a)W], ift<t,
A R-Q-W],  ift,<t<t,
H=1{% (7)
SR-1—aw],  ift.<t<t
1 .
km [R — (1 - a)W], ift > tT'
and
H(t) >0, H(ty) = H,, H(t;) =H., H(t,) =H,, H(tr) = Hy. (8)
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where [ denotes the discount rate. The parameter 0 < {0} <1 captures the impact of
groundwater extraction on the aquifer system’s storage capacity (Dinar et al., 2020).
Following Ndahangwapo et al. (2024), we assume that the reduction in aquifer storage
capacity is constant and independent of the aquifer system’s volume. To solve the above
multi-stage optimal control problem, the optimization is conceptually divided into four sub-
problems, as in Kim et al. (1989). However, in this study, we employ a backward induction

approach. The fourth sub-problem (SP4) is presented below.

®  WE  gW,
maXw, H,,tr -ftT e_lt[j - k : - (CO + ClH4)W4
+60( 7+ (Hy — LS(Hy) — Hy + LS(Hp))?) = B - LS(W,) — ¢ (Wi, Hy) - pldt (9)
subject to
. 1
Hy = —[R— (1 - a)W,], (10)
H,(tr) = Hy given, t; free. (11)

The optimal solutions, H,(t) and W, (t), during the critical unhealthy phase, assuming that
the severe unhealthy phase switches to the critical unhealthy phase when time t; is

surpassed, are determined by the following expressions.

iR

sp) = 22459 @ -ty _ R
Wy (t) = 1 [Hr . Je*2 Y (12)
iR iR
H*(t) — [H _ ﬁ_NN]exz(t—tT) +ﬁ_NN (13)
4 T uu uu ’
i— /i2+4uua—_1 _
where, x, = ———% <0, G, =PI, Gy = bym(1—n+my), G5 =2+ P 4
oy
G3(1 - O()CO - Gz(l - a), Gﬁ = m, G7 = 63(1 - C() - 1, GB =1- 263(1 - a), uu =
ikC,1 G, n 2mkGg and NN = _ig _ikCo | ikGs kG;CiR _ mKkGzRC;  2mKkGeHp
Gg 0Gg ’ Gg Gg Gg QASGg QOGg Gg

The proof of sub-problem 4 can be found in Appendix 2. This paper is the first to explicitly link
GDE health stress to the combined effects of LS and groundwater decline, establishing a dual-
stressor framework for GDE vulnerability. From a policy perspective, this provides decision-
makers with a new tool to internalize the ecological costs of unsustainable groundwater use.
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While Ndahangwapo et al. (2024) examined taxes on LS and storage capacity loss, their
framework did not incorporate GDE health. Similarly, Esteban and Albiac (2011) analyzed
taxes targeting ecosystem damages from falling water tables but excluded the role of LS. The
optimal solutions derived in this framework support the design of integrated groundwater
governance strategies that better align hydrological management with GDE protection,

particularly in regions where LS poses an additional threat to ecosystem viability.

Two types of Pigouvian taxes examined. The first is 5, a Pigouvian tax charged per unit of land
sinking, which directly internalizes the economic costs associated with LS. The second is a tax
on each cubic meter of aquifer storage capacity lost, denoted by ¢ (W, H), which internalizes
the storage capacity loss externality. Together, these taxes provide complementary
approaches to incentivize sustainable groundwater use and mitigate damages to GDEs. In
addition, Propositions 1-4 examine the impact of taxes on both groundwater extraction and
GDEs’ health. These combinations are analysed to illustrate how different Pigouvian taxes
target specific ecological and hydrological externalities at various stages of ecosystem
degradation, and to show how regulatory interventions can align private extraction decisions
with social welfare objectives. By linking tax instruments to both water table levels and GDE
health outcomes, the propositions demonstrate the effectiveness of these policies in
mitigating LS, preserving aquifer storage capacity, and maintaining ecosystem function across

different phases of ecosystem stress.

Proposition 1. The Pigouvian tax per unit of land sinking () directly influences groundwater
management in the critical unhealthy phase. A higher Pigouvian tax reduces the optimal level

of groundwater extraction and raises the optimal water table level.

The proof of Proposition 1 can be found in Appendix 3. In the critical unhealthy phase,
irreversible ecological and hydrological damages emerge as external costs not borne by
individual users. To correct this market failure, the regulator imposes a Pigouvian tax (£) on
LS per unit of extraction. This raises the marginal cost of pumping, reduces optimal
groundwater use, and maintains a higher water table. By internalizing the rising marginal
damage from LS, the tax aligns private extraction decisions with social costs and helps prevent

further ecological damages.
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Proposition 2. The Pigouvian tax per unit of aquifer system storage capacity loss (¢p(W,H))
directly influences groundwater management in the critical unhealthy phase. A higher
Pigouvian tax reduces the optimal level of groundwater extraction and raises the optimal

water table level.

The proof of Proposition 2 can be found in Appendix 4. In this phase, groundwater pumping
damages GDEs and reduces aquifer storage capacity. A Pigouvian tax (¢ (W, H)) internalizes
the social cost of storage capacity loss, raising the marginal cost of extraction. This incentivizes
users to pump less, maintaining a higher water table, slowing LS, and preserving aquifer

capacity.

Since the solution to sub-problem 4 is obtained, we solve for a solution to sub-problem 3
(SPs3). Following Raouf et al., (2003); Boucekkine et al., (2004); and Dinar et al., (2020), we

impose the following matching conditions for optimality and continuity.

A3 (b, W3 (tr), H3(tr)) = Ay (tr, Wy (tr), Hy(tr)) (14)
-7-[; (tT) — aSPI(tTIW(f:;T)-HZ(tT))’ (15)

where SP; () represents the optimal solution to sub-problem 4. The variable H, represents

the hamiltonian for sub-problem 4. As a result, sub-problem 3 is given by

tr  _ie WE gW.
maXW3,H3,tcf Te o et TS — (Co + C1H3)W;

tc 2k
+0 (7 - (Hy = LS(H;) — Hy + LS(H))? +y) — B - LS(Wy)ldt + SP{(Hy, tr),  (16)
subject to
H; = =[R = (1 - a)Ws], (17)

H3(tc) = HC glvel’l; Hg(tT) = H4(tT) = HT; tT free; tC <t< tT' (18)
The optimal solutions, H3(t) and W5 (t), during the severe unhealthy phase, assuming that
the unhealthy phase switches to the severe unhealthy phase when time ¢, is surpassed, are

determined by the following expressions.

W;(t) = DAet” + DBet?s — 2 (19)
3
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_ _ iR
" (a—1)DA (a—1)DB lT—NNN
Hi(t) = ———et"1 4 ———el?22 f &= (20)
3 ASzq ASz, uuu
i+ /i2+4-uuu-a—_1
_ AS __ Bneby _ 67 _ ) _
where z;, = — G, = YT Gy = T YW= 2mkGq — ikC;, NNN =
. . . CiRk
—ig — ikCy — ikG,(1 —a) + TR 2mkGoHr, and
iR iR
iR ~Z_NNN ~—__NNN _
_B _ 2245 __z¢, H _—al_l—NNN _ [Hr—% huu ]—-[H—< iuu JeZ2(tT—tc) 51
T a1 € [ ¢ uuu eZ1(tr—tc) _Z2(tT—tc) ] ( )

iR iR
—2 _NNN _ _
— 7,45 [Hp=%=% |=[Hc—%=

DA — [ uuu uuu

ezltT_ezltc+zz(tT—tc)

N]ezz(fT-tc)

(22)

a-1

The proof of sub-problem 3 can be found in Appendix 5. For the first time, taxes on LS () are
applied during the severe unhealthy phase of GDEs, where stress arises from both LS and a
declining water table. Unlike prior studies, this framework treats these co-occurring stressors
jointly, targeting a critical stage of ecosystem degradation. For policymakers, such taxes
discourage harmful extraction after critical thresholds are crossed, signaling that urgent

mitigation and restoration actions are needed in severely stressed aquifers.

Proposition 3. The Pigouvian tax per unit of land sinking () directly influences groundwater
management in the severe unhealthy phase. A higher Pigouvian tax reduces the optimal level

of groundwater extraction and raises the optimal water table level.

The proof of Proposition 3 can be found in Appendix 6. The Pigouvian tax (f) on LS internalizes
the external cost of subsidence, raising the marginal cost of extraction and reducing
groundwater pumping. This maintains a higher water table, preserves ecological function, and
slows further subsidence. Since subsidence is still reversible in this phase, the tax provides a

cost-effective intervention that prevents escalation into the critical unhealthy phase.

Proposition 4. The Pigouvian tax per unit of land sinking () has a direct impact on the optimal
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GDEs’ health in the severe unhealthy phase. The higher the Pigouvian tax the higher the
optimal level of the GDEs’ health.

The proof of Proposition 4 can be found in Appendix 7. Increasing the Pigouvian tax (£) on LS
raises the marginal cost of pumping, reducing extraction, subsidence, and maintaining a
higher water table. Because GDEs’ health depends on groundwater depth, this leads to
improved ecological outcomes and higher optimal GDE health. Thus, the tax acts as both a
corrective and proactive tool, protecting ecosystem services efficiently before irreversible

thresholds are crossed.

Since the solution to sub-problem 3 is obtained, we solve for a solution to sub-problem 2

(SP,). Likewise, we impose the following matching conditions for optimality and continuity.

Ao (te, W2 (te), Hy (t)) = A3(te, W3 (tc), H3(tc)) (23)
‘7_[2* (tc) — 6SP3 (tCJW;t(::C)rHS(tC))' (24)

where SP; (+) represents the optimal solution to sub-problem 3. The variable H’; represents

the hamiltonian for sub-problem 3. As a result, sub-problem 2 is given by

maxy, b, t, ftif et [vzv_f - gTWZ — (Co + CLH)W,
(G (Hy = HO? + pldt + SP(HC, £, (25)
subject to
Hy = 2[R = (1—a)W,] (26)

H,(t,) = H, given; H,(t.) = H;(t;) = H.; t. free; t, <t <t.. (27)
The optimal solutions, H;(t) and W, (t), during the unhealthy phase, assuming that the
healthy phase switches to the unhealthy phase when time t,, is surpassed, are determined by

the following expressions.

W; (t) = EAet91 4+ EBetdz — L, (28)
2

a-1

(a—1)EA (a—1)EB R _pppP
* a— a— 1
Hy(0) = e+, et (29)
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i+ |i2+4-ddd-52
ety oap ddd = 2mkG,, — ikCy, PPP = —ig — ikC, +

where g, , = .  Gro = 5=,
C1Rk
DT 2mkG,yH,, and
iM iM
iM 5 —PPP ~5—PPP bt
EB =1 —Q2tu[H _m PPP _[HC gaq ) Mu=" 344 Jed2(te u)] (30)
m u ddd ed1(tc—tu) —eqz (tc—tw) '
iM iM
——PPP ——PPP
=7 _ 41 (lHe o 1-[Hy mddd Jeq2(te=tu)

EA=%] ddd
m

ed1tc—ed1tutqz(tc—tu) (31)
The proof of sub-problem 2 can be found in Appendix 8. These optimal solutions target the
unhealthy phase of GDEs, where ecological damage is still highly reversible. This phase
provides a narrow but critical window for intervention. The results guide policymakers to
stabilize GDE health and slow progression toward severe degradation, offering timely,

proactive strategies to prevent ecological collapse, especially in regions near tipping points.

We obtained the solution to sub-problem 2, we can solve for the solution to sub-problem 1

(SP;). Likewise, we impose the following matching conditions for optimality and continuity.

Aq (b, WY (8,), Hi (ty)) = A5 (tw, W2 (t), Hz2 (t)) (32)
:]_[ik (tu) — aSPZ (tu'Wgtfiu):HZ(tu))’ (33)

where SP; () represents the optimal solution to sub-problem 2. The variable #; represents

the hamiltonian for sub-problem 1. As a result, sub-problem 1 is given by

maXy, y, fotu et [‘;V_,lj - gkﬂ — (Co + CH)W,
Oy (S1 = H)? + D]de + SP; (Hy 1), (34)
subject to
Hy = —~[R - (1-a)W] (35)

Hl(to) = HO glven; Hl(tu) = HZ(t‘U_) == H‘LL; tu free, 0 S t S tu- (36)
The optimal solutions, H;(t) and Wy (t), during the healthy phase, are determined by the

following expressions.
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Wi (t) = Ae™s + Bez — —, (37)
« (a—1)A (a-1)B _aifl—N
Hi(t) =2ty f (2B oty, pam1 (38)
ASYq ASy, u

it [i2+aust
Where yl,z = —As,u = kaGll - ikCl, N = _ig - ikCO + GaRk kaGnSl, Gll =

2 as

901 and
[S1—Hy]?
iR iR
iR 1N =1 yatu
B = 2451y g NV [Hu=Tm - [Ho— T e (39)
T a-1 [ 0 u eYitu—eYV2tu ]’

iR iR _\
— a=1 Yatu
]-[Ho—%=2—]e

— Hy, a-1
1= Vy1AS [[ (40)

a—1 eYitu—eYV2tu

The proof of sub-problem 1 can be found in Appendix 9. These results are crucial because few
aquifers remain in the healthy phase, while most have already experienced irreversible LS and
entered degraded states. For policymakers, this provides a rare opportunity to act proactively,
maintaining the aquifer within safe ecological limits. The optimal solutions offer a preventive
blueprint, enabling regions still in this phase to avoid delayed responses and stay ahead of

ecological degradation. The quota system is analysed in the next subsection.

4.2 Implementation of the quotas system

An effective quota system limits groundwater extractions to remain within the aquifer’s
sustainable yield or ecological thresholds. To analyze its impact on GDE health and
groundwater use, we introduce the constraint W (t) < W, with ¢(W,H) =0, Q = 1, and
B =0, where W is the quota level. The goal is to determine optimal extraction and water
table levels that slow or prevent cumulative drawdown, internalizing externalities and
aligning individual water use with aquifer and GDEs’ health sustainability. If properly designed
and enforced, the quota keeps the system in the healthy phase, preventing transition to
unhealthy or critical phases. A quota is effective only if monitored, enforced, and based on

ecological thresholds and realistic recharge rates. Farmers’ welfare maximization is then
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solved subject to this quota policy.

o i W2 w §-1
maxy, [, e [2-— L — (Co + CLH)W + 6 Soy Su= )2 + Dlde (41)
subject to
. 1
H=—[R-(1-aW], (42)
W) <w, (43)
and
H(t) > 0; H(ty) = Hy and H(t,) = H, given. (44)

The optimal solutions, H*(t) and W*(t), under quota restrictions to preserve the ecosystem

health, are determined by the following expressions.

. R
T2AS Nt ot R
W(e) = { e Ho — =5 1€ =7 No 2 Na(®) (45)
w Ny < N,(t)
No—i—2— No—i—2—
[Ho — —ﬁa_l]erzt + —ﬁa_l Ny = Ny (t)
H*(t) = (46)
© Na(O-it=  Na()—i
[Hy -~ metjeret + 24 at Ny < N, (0).

i- Ji2-au%t _
—AS, u= —kaGll + ikCl, Gll = B(6-1)

C1RK
2 [S1—Hy]?’

AS

where 1, = Ny = —ig — ikCy +

W(a—1)+R _ — iR
—_ (—)e rt u + _
T2 AS a-1

2mkGy1S;, and Ny (t) = Hyu
The proof of the quotas resolution can be found in Appendix 10. The optimal solutions
illustrate the evolution of water table levels and extractions when quotas are applied early,
during the healthy phase, and maintained through the planning period. By protecting GDEs
from the outset, quotas can delay the system from entering unhealthy or irreversible states,
ensuring sustainable groundwater use and preserving ecosystem health. This approach
provides decision-makers with a strategy to maintain long-term ecological and hydrological
balance, avoiding future trade-offs between water use and environmental protection.
Ndahangwapo et al. (2024) showed that when a quota is applied, the planning period starts

with a phase where Ny < N, (t), followed by a phase where N, > N,(t). Since this result has
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already been established in the literature, proving it again here would be redundant. We

therefore proceed to state the following propositions.

Proposition 5. There exists a critical quota level W, such that if W < W, at the beginning of
the planning period (t = 0), the quota remains binding (N, < N,(t)) throughout the entire
period. In contrast, if W > W, at the beginning of the planning period, the quota is initially
non-binding (N, = N, (t)), but the system eventually transitions into the binding quota phase

at a finite time

The proof of Proposition 5 can be found in Appendix 11. The quota binds when farmers want
to extract more than the imposed level W, forcing their unconstrained optimum down to ¥,
which occurs when the policy constraint is active (N; < N4(t)). A non-binding quota occurs
when the unconstrained optimum is already less than or equal to W, so the constraint is
inactive (N, = N4 (t)). The critical quota level determines whether the quota affects optimum
extractions, enabling regulators to control water use via the numerical level of the quota

without heavy enforcement.

Proposition 6. If the quota binds (N, < N4(t)) at the start of the planning period, increasing
the maximum total economic value (6) of pristine GDEs’ services lengthens the duration of the

binding quota phase.

The proof of Proposition 6 can be found in Appendix 12. A higher economic value of GDEs (6)
makes the quota more effective, causing it to bind for a longer period. In practice, if society
increases 6 (e.g., by legally recognising GDEs’ values), the regulator can maintain the same

conservation outcome with a less strict quota level.

Proposition 7. When the quota is binding (N, < N,(t)) for t > 0, there exists a maximum
allowable quota level (VT/'b) that ensures the water table level remains above all critical

thresholds for the water table height.

The proof of Proposition 7 can be found in Appendix 13. The quota level (W) quantifies the
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maximum allowed extraction level that keeps the water table above all critical thresholds
each year. In other words, ecological thresholds can be directly translated into clear,
enforceable quota levels. The next subsection deals with the implementation of packaging

and sequencing of policy instruments.

4.3 Packaging and sequencing of taxes and quotas

Adoption of quotas and taxes as standalone instruments has faced criticism due to high
transaction costs, particularly for quotas, making them economically inefficient (Maddock and
Haimes, 1975; Lenouvel et al., 2011; Esteban and Dinar, 2013). Combining quotas with taxes
is often more efficient (Wetzman, 1974). For policy sequencing, one instrument may be
applied first, the other later, or both simultaneously (packaging). Without intervention,
optimal extraction initially exceeds steady-state levels and rises over time, making early
guotas during the healthy phase effective, while taxes are not applied in the healthy and
unhealthy phases. Mild taxes can signal risk and partially internalize ecological value in phase
2, but quotas are avoided in the unhealthy phase to preserve incentives for efficient water
use. In the severe unhealthy phase, extraction above the quota is fully taxed, while amounts
at or below the quota are untaxed. In the critical unhealthy phase, only quotas are applied to
cap physical damage, since taxes alone cannot prevent collapse. Farmers, welfare is

maximized as in Equation (6), subject to the new quota constraint.

1 .
(ﬁ [R—(1—-a)W], ift<t,

.| SR-A-aow), it <t<t
H={4 _ (47)
g[R—(l—a)W], ift. <t<tr

1 .

0, ifW(t) < W (and quota restriction applies)

= 48
B {tax, if otherwise. (48)
_ (0, ifW(t) < W (and quota restriction applies)
¢ = : : (49)
tax, if otherwise.

23



670

671
672
673
674

675

676

677

678

679

680

681

682

683

684

_ {1, if W (t) < W (and quota restriction applies) (50)

0<Q<1, ifotherwise.

The optimal solutions to the objective function (47) and the constraints ((48), (49), and (50))

are given below.

(AetY1 4+ BelVz — %, ift <t,,
EAet®: + EBet® — —, ift, <t<t.,
DA2e'? + DB2e'”2 — —, ift, <t <ty &DA2 < Ni(0),
W) =1 — — - — (51)
DAe': + DBe'” — —, ifBE, <t <t; &DA2 > Ny(b),
a,ASQ £_N1 az(t—tr) R .
?[ T—T]e _E' lft>tT&N1SNB(t),
7, ift >ty & N; > Ng(t).
( 1 = L
weth +wet3’2 +d, iftStu,
ASyq ASy, u
J— J— iR
(@-1EA 44 (@a-DEB _tq w1 PPP .
ASqq et ASq, e+ ddd '’ ift, <t =<t
N N iR
— - ———PP —_—
DB gtry 4 DB gty a5l ifp, <t < t; & DA2 < Ny(0),
H*(t) =< 1 2 . (52)
— — iR
— - ———NNN —_—
@ VPA gtz 4 @ZDDB otz pasi " fy <t < t; & DAZ > N (t),
ASzq ASz, uuu
iR iR
—_N —~_N
[Hy — ettt 4 el ift >ty & N; < Ng(t),
iR iR
a1 Ne(®) _ el 105 NN
\[Hy — ‘“T]eaz(t tr) 4 e, ift > tr & Ny > Ny ().
i /i2+4ﬁo‘—‘1 _
where, a, = 2 <, Gg = Q—V, ul = —ikC; + 2mkG6, N, = —ig — ikCy +
2 [Hr—Hp]? Q
KGR omkG.H ,and Nz (t) = W@ DRl o—ap(t-tr) _ g 31 + -2
611p B T 71

QAS a,ASQ

— s R oy (g, BTt
DB2 = - e %2te[H, — &= - v (tr—to) zm(Ltu “to) ] (53)
a-1 uuu e?1U T~ tc)—e22\tT™ c
iR iR
X _p X _pp
a-—1 _ a—1 Zp(tr—tc)
DAZ = 248 (BT ey 0 T ) (54)

a—1 eZ1tT _eZ1tctza(ty—tc)

The proof of the packaging and sequencing resolution can be found in Appendix 14. The rest
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of the parameters were defined in the previous sections. We present three propositions

about packaging and sequencing of taxes and quotas.

Proposition 8. There exists a critical quota level W, such that if W < W, at the beginning of
the critically unhealthy phase (t = ty), the system is initially binding (N; > Ng(t)), but the
system eventually transitions into the non-binding quota phase at a finite time until the end
of the planning period. If W > W, at the beginning of the critically unhealthy phase, the quota

remains unbinding throughout the entire phase.

The proof of Proposition 8 can be found in Appendix 15. This proposition shows that even in
the critically unhealthy phase, a well-chosen quota level can prevent over-extraction. If the
quota level is set below the critical level, the system starts under pressure but eventually

relaxes, allowing recovery into a non-binding quota regime before the planning horizon ends.

Proposition 9. When the quota is binding (N; > Ng(t)) for t > tr, there exists a maximum
allowable quota level (Wk) that ensures the water table level remains above the aquifer

bottom level (Hg).

The proof of Proposition 9 can be found in Appendix 16. This proposition implies that even in
the critically unhealthy phase, groundwater use can be regulated to avoid complete GDEs
collapse. By capping quotas at or below Wk, policymakers can guarantee that extraction never
pushes the water table to the the aquifer bottom, thus preventing irreversible damage and

securing minimum ecosystem survival.

Proposition 10. If the quota binds (N, > Ng(t)) at the beginning of the critically unhealthy
phase, increasing the maximum total economic value (8) of pristine GDEs’ services shortens

the duration of the binding quota phase.

The proof of Proposition 10 can be found in Appendix 17. This proposition shows how the
economic valuation of GDEs (0) directly affects water management outcomes. When 6

increases, the regulator places greater weight on conserving GDEs, which tightens the optimal
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extraction path. As a result, even if the quota initially binds at the start of the critically
unhealthy phase, the system exits the binding regime sooner, reducing ecological stress. The
next section derives the optimal solutions when there is LS but no policy interventions are in

place.

4.4 LS-GDE and No policy interventions

In the absence of any policy interventions and under conditions where LS is present, we add
a new constraint to equations (7) and (8). That is, we assume = ¢ (W, H) = 0, meaning no
tax policy is applied. Under these conditions, the optimal extraction and water table levels,

denoted by W*(t) and H*(t), are given by the following expressions.
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The proof of the “LS-GDEs and no policy intervention” resolution can be found in Appendix
18. The rest of the parameters were defined in the previous sections. The theoretical findings

areillustrated through an empirical application to the Dendron aquifer system in South Africa.

5. Application to the Dendron aquifer
The Dendron aquifer system in South Africa’s Hout River Catchment, part of the Limpopo
River Basin, is a crucial water source in this semi-arid region, where average annual rainfall is
only 407 mm. Since the 1970s, both commercial and non-commercial farmers have relied on
this aquifer for irrigation, with groundwater withdrawals increasing significantly over time
(Ndahangwapo et al., 2024). Between 1968 and 1986, irrigated land expanded by 170%,
leading to a 133% rise in groundwater extraction (Masiyandima et al., 2002). Persistent
droughts and weak enforcement of groundwater regulations have further exacerbated the

depletion of water levels.

GDEs are recognized by the Water Research Commission in South Africa (Colvin et al., 2003),
although they are not explicitly mentioned in the National Water Act of 1998. The Act ensures
water is reserved for both human and environmental needs (Rohde et al., 2017). However, its
emphasis on surface water and lack of clear distinction between surface and groundwater has
limited effective consideration of GDEs in water management (Aldous and Bach, 2011). Land
subsidence (LS), caused by excessive groundwater extraction, has been observed in Dendron,
particularly in areas with clay sediments prone to compaction (Oosthuizen & Richardson,
2011). Over-extraction has also negatively affected groundwater-dependent ecosystems
(GDEs), such as riparian forests in the Limpopo River's seasonal alluvial systems, which are
highly sensitive to water table declines (Colvin et al., 2007). The region’s economy, heavily
dependent on agriculture, faces rising irrigation costs as water tables drop. Though the
National Water Act of 1998 mandates permits for borehole irrigation, weak enforcement has
allowed over-extraction to persist (Fallon et al.,, 2018). Despite annual groundwater

assessments, water levels continue to decline, further degrading GDEs.
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The aquifer’s vulnerability is compounded by its geology and hydrology. Fine-grained clay
sediments make it particularly prone to subsidence under excessive pumping. The aquifer’s
estimated storage capacity is 124 million cubic meters, but most usable groundwater is found
in the lower fractured zone, as the upper weathered zone has dried out (Jolly, 1986). This
over-reliance on the deeper aquifer increases the risk of depletion. Without stricter
enforcement of water regulations and sustainable management strategies, groundwater
over-extraction, land subsidence, and ecosystem degradation will continue to threaten both
the region’s ecological health and its agricultural viability. Below is the table with the

hydrological and economic values of the Dendron aquifer system as obtained from the

mentioned sources.

Table 1. Hydrological and economic values of the Dendron aquifer system.

Parameter | Description Units Value Source
k Water demand slope $/Mm3 -0.0425 Ndahangwapo et al.
(2024)
g Water demand intercept $/Mm3 62 Ndahangwapo et al.
(2024)
Co Pumping costs intercept $/Mm3 5209.84 Ndahangwapo et al.
(2024)
C1 Pumping costs slope $/Mm3m |-3.94 Ndahangwapo et al.
(2024)
a Return flow coefficient dimensionless|0.2 Jolly (1986)
H, Current water table m 1224.5 Fallon et al. (2018)
Ht Critical water table level m 1189.5 Ndahangwapo et al.
(2024)
Natural recharge Mm3/year |7.35 Jolly (1986)
Aquifer system area km? 1600 Masiyandima et al.
(2002)
S Storativity coefficient dimensionless|0.0025 Masiyandima et al.
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(2002)

{ Social discount rate % 0.08 Conningarth
Economists
(2014, pp.69-70).
B Pigouvian tax per unit ofl$/m 1,245 Ndahangwapo et al.
land sinking (2024)
Water density Kg/m3 1000 Wade et al. (2018)
Aquifer system’s thickness |m 110 Masiyandima et al.
(2002)
Y Aquifer system’sims? /kg 5.1 x 1071% |Ndahangwapo et al.
compressibility (2024)
n Porosity dimensionless|0.34 \Woessner and
Poeter (2020)
£ Gravitational acceleration |m/s? 9.81 \Wade et al. (2018)
Ny Vadose moisture/ Total 0.1 Jolly (1986)
volume dimensionless
s Unit weight of water N/m3 9810 Poland and Davis
(1969)
o Ecosystem services annual Million $ 2.53 Authors
economic value
Hp Aquifer bottom m.a.s.l 1169.5 Authors
H, Unhealthy phase criticallm.a.s.l 1200.5 Authors
threshold
1) Unhealthy phase critical 0.5 Esteban et al.
threshold dimensionless (2021)
p Severe unhealthy phasedimensionless|0.35 Authors
critical threshold
Y Critical unhealthy phase/dimensionless|0.15 Authors
critical threshold
H, Severe unhealthy phase/m.a.s.l 1191.5 Ndahangwapo et

critical threshold

al. (2024)
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Hr Critical unhealthy phase/m.a.s.! 1189.5 Authors

critical threshold

According to Ndahangwapo et al. (2024), the effective tax rate per unit of land sinking is § =
1245 US dollars, the empirical tax rate is f = 3345 US dollars, and the increase in the
effective tax rate which is used for the sensitivity analysis is § = 4 Million US dollars. We
make use of the ame values. Ndahangwapo et al. (2024) determined that the effective
groundwater abstraction quota for the Dendron aquifer, when excluding the effects of land
subsidence and ecosystem health considerations, is approximately 10 Mm?/year. By
contrast, the prevailing quota of 14 Mm?/year was found to be unsustainable and ineffective
in safeguarding the long-term viability of the aquifer system. For the purposes of the
sensitivity analysis, this existing quota level will be considered alongside an alternative quota

of 20 Mm?/year, consistent with the approach adopted by Ndahangwapo et al. (2024).

The aquifer bottom Hz = 1169.5 m.a.s.l (Jolly, 1986). level. There is little groundwater at
heights below 1169.5 meters above sea level (Jolly, 1986). Since the aquifer thickness is 110
meters, the aquifer top water table height is 1279.5 m.a.s.l. We assume that the GDEs’
health critical threshold beyond which the GDEs’ health switches to the unhealthy phase is
6=0.5 (Esteban et al., 2021). In addition, without loss of generality, we assume that the GDEs’
health critical threshold beyond which the GDEs’ health switches to the severe unhealthy
phase is p=0.35, and that the GDEs’ health critical threshold beyond which the GDEs’ health

switches to the critical unhealthy phase is y=0.15.

We further assume that the GDEs critical threshold for the water table height beyond which
the GDEs’ health switches to the severe unhealthy phase is Hy = 1189.5 m.a.s.[, just 20m
before the aquifer bottom (Ndahangwapo et al., 2024). The GDEs critical threshold for the
water table height beyond which the GDEs’ health switches to the critical unhealthy phase is
H. =1191.5m.a.s.l. We were unable to find an exact economic value of the ecosystem
services provided by the Dendron Aquifer from the literature. Therefore, we used the carbon
sequestration value from the Mogale’s Gate Biodiversity Centre as a proxy. The Mogale’s Gate
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Biodiversity Centre, a game reserve in Gauteng province, South Africa, hosts approximately
702 plant species (Mudavanhu et al.,, 2017). The estimated economic value of carbon
sequestration at the reserve is approximately 2,538,658 US dollars. GDEs, such as wetlands
and riparian forests, play a key role in carbon sequestration. Their stable groundwater
supports plant growth and the accumulation of carbon-rich soils, storing carbon for centuries.

If groundwater is depleted, this stored carbon can be released as CO, and methane.

6. Results and discussions
This section compares three groundwater management policy instruments, Pigouvian taxes,
withdrawal quotas, and their combined use involving the packaging and sequencing of taxes
and quotas. The focus is on how each policy intrument affects groundwater conservation,

farmers’ welfare, and ecosystem health under land subsidence impacts.

6.1 Base case scenario (No LS, no GDEs scenario and no policy interventions)

A 600-year planning horizon is adopted, as the system converges to a steady state within this
period. We observe (Figure 2) groundwater extractions rising sharply during the first 50 years.
After that, there is a sharp decline for about 14 years, followed by a more gradual decline
until the system eventually reaches a steady state. During the first 50 years, as groundwater
extraction expands, water becomes physically scarcer. Extractions rise beyond the natural
recharge rate of 7.35 Mm?® per year, which means future groundwater use must fall.
Economically, the falling water table pushes up pumping costs, continuously making
groundwater increasingly expensive. At its highest, extraction peaks at 60 Mm? in year 50,
then declines until stabilizing. Over the whole planning period, the water table keeps falling
because the annual extractions are comparatively higher than the annual recharge. For
example, in year 500 extraction is 9.32 Mm?, above the 7.35 Mm? annual recharge. This
reflects the over-exploitation of the aquifer, a finding also highlighted by Ndahangwapo et al.
(2024).

Between years 50 and 64, extractions fall sharply. This is because the marginal cost of
extraction (MEC) is rising rapidly as the water table falls steeply, making each unit of
groundwater far more expensive to lift. Farmers respond by cutting back water use to avoid

unprofitable costs. After year 64, the rise in extraction costs slows down. By then, the water
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table may have stabilized in a deeper zone, so additional declines are slower. That means the
incremental cost of pumping (MEC) is still rising, but at a slower rate. This explains the gradual

decline in extractions until the steady state is reached.
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Figure 2 (a). Optimal paths of groundwater extractions and water table levels under the

baseline scenario.

Under the current calibration, with a constant natural recharge of R = 7.5Mm? per year, the
aquifer never recovers. The recharge is too small relative to the rate of pumping, causing H(t)
to continue declining over time. The water table begins to rise only when pumping is reduced

to a level at which recharge plus return flow exceed total extraction. This condition is satisfied
. . el s . R
only when annual pumping declines below the equilibrium groundwater extraction level, Py

Thus, no increase in the water table level is observed throughout the planning horizon.

We account for uncertainty in the natural recharge rate (R ~ 7.5 Mm?®) by conducting a
Monte Carlo simulation in which R varies according to historical rainfall variability in the
Dendron area. Gridded rainfall data (1900-2015), extracted using the area’s geographic
coordinates, were used to characterise this variability. A Gamma distribution was selected
because it provided the best fit to the rainfall dataset and is widely applied in modelling
rainfall and groundwater recharge (e.g., Husak et al., 2007; Bermudez et al., 2017; Martinez-
Villalobos and Neelin, 2019; Sen, 2019; Ximenes et al., 2021). Further details on the simulation
procedure and datasets are provided in Appendix 20. All the simulations were run 300 times

in all sections.
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Across 300 simulated recharge realizations, extraction initially rises sharply before declining
toward a long-run level (Figure 2(b)). We observe (Figure 2(c)) that sample extraction paths
(thin red lines) demonstrate that uncertainty in recharge generates a wide dispersion in short-
run extraction rates, with some realizations showing rapid declines and others stabilizing
more gradually. Despite this variability, the mean extraction path (thick red line) converges to
approximately 9.6 Mm?/year by around t =~ 350 — 400, indicating the system’s long-run
equilibrium in the absence of management. The spread of the simulated trajectories narrows
over time, suggesting that extraction becomes less sensitive to recharge uncertainty as the

system approaches equilibrium.

Monte Carlo Mean & Sample Extraction Paths Monte Carlo Mean & Sample Water Table Paths
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Figure 2 (b). Monte Carlo simulations of optimal groundwater extraction and water-table

paths under the baseline scenario.

The simulated water-table trajectories (thin blue lines) reflect the same recharge-driven
uncertainty (Figure 2(b)). Water levels decline steeply at first, with greater divergence in early
periods, but gradually stabilize as the system converges toward its equilibrium level. The
mean path (thick blue line) settles around H = 1172.8 m by t = 350 — 400. The wide
initial spread reflects the dependence of early water-level dynamics on rainfall variability,
whereas the later narrowing indicates that long-run groundwater conditions are more stable,

even under significant recharge uncertainty when no policy constraints are present.
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Figure 2 (c). A blow-out of the left panel of the graph in Figure 2(b) for years t = 10 to 90.

6.2 Scenario with Land Subsidence, GDEs, and No Policy Intervention

Without policy interventions under the LS and GDEs scenarios, farmers are directly affected
by the loss of the aquifer system’s storage capacity. We observe (Figure 3(a)) that in phase 1
(healthy phase), farmers pump aggressively because the water table is shallow, extraction
costs are low, and there are no policy interventions. Extractions rise gradually to 64.5 Mm?3 (Q
=0.4) and 59.5 Mm?3 (Q = 0.49) before the system shifts into the unhealthy phase (phase 2),
where Q captures the impact of groundwater extraction on aquifer storage capacity. In phase
2, extractions continue increasing but now sharply, reaching peaks of 116 Mm?3 (Q = 0.4) and
115 Mm?3 (Q = 0.49). Entering phase 3 (severe unhealthy) in years 187 and 189, respectively,
extractions fall to 101 Mm?3 (Q = 0.4) and 94 Mm?3 (Q = 0.49). As shown in Figure 3(b),
extractions then begin to rise again once LS emerges, since LS starts in phase 3 and continues
into phase 4. Even without taxes, extractions can decline in phase 3 because the system
becomes more “expensive” and “fragile” when subsidence begins. Compaction amplifies
depletion by reducing hydraulic conductivity and increasing pumping lift. Lower hydraulic
conductivity slows the rate at which water can move through the aquifer, making it more
difficult to sustain previous extraction levels without inducing additional drawdown. In the
absence of policy intervention, farmers continue extracting heavily through phases 2 and 3 to
maximize short-term profit, prioritizing immediate economic returns over long-term aquifer

sustainability despite escalating ecological stress.
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Figure 3(a). Optimal paths of groundwater extractions and water table levels under different
values of the constant ({) representing the impact of groundwater extraction on the aquifer
system's storage capacity.

Note: Yellow solid line shows the empirical constant (2 = 0.4), the black dotted line shows

the increase in the empirical constant (2 = 0.49).

Inelastic compaction, which permanently reduces aquifer storage capacity, begins in phase 4
(critically unhealthy phase). The storage capacity of the aquifer system is affected by the size
of the constant (£2) in phase 4, and the larger it is, the more resistant/unaffected that area is
to land sinking. This is because the smaller the LS impact, the larger the constant Q is
(Ndahangwapo et al., 2024). We observe (Figure 3(a)) that when the LS impact is small (large
Q), the aquifer is still able to release water more easily, even at deeper levels. Because the
system can still supply water without severe permanent losses, the transition into the critical
stage (phase 4) is delayed (Figure 3(b)). However, when the LS impact is big (small Q), it signals
that the aquifer’s ability to release water has already been heavily damaged. This accelerates
the system’s transition into phase 4 (Figure 3(b)), because the system reaches the point of
permanent compaction and reduced aquifer storage capacity much faster. With no policy
interventions, farmers start with high extraction from year zero. But once storage capacity
reduces, the water table falls, raising pumping costs. Farmers therefore reduce their

extractions in phase 4.
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Figure 3(b). A blow-out of the graph in Figure 3(a) for years t = 160 to 190.

We observe (Figure 3(c)) that cumulative LS remains equal to zero in phases 1 and 2,
regardless of the value of Q. The reason is that in these phases, ecosystem stress comes only
from declining groundwater levels since LS has not yet occurred. In phase 3, stress intensifies
as it results from both further groundwater declines and rising LS caused by elastic

compaction. In phase 4, stress is driven by groundwater declines, LS, and aquifer storage

capacity loss.
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Figure 3(c). Ecosystem health status and cumulative LS under different values of the constant

(Q) representing the impact of groundwater extraction on the aquifer system's storage
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Note: Yellow solid line shows the empirical constant (2 = 0.4), the black dotted line shows

the increase in the empirical constant (2 = 0.49).

We observe (Figure 3(c)) that, in phase 1, when the LS impact is smaller (larger Q), GDEs’
health is similar to the case when the LS impact is larger. In phase 3, aquifer storage capacity
is unaffected by LS, so the only LS effect comes through the elastic compaction term, which
reduces the water table but does not amplify extraction costs via Q. When Q is small (large LS
impact), the system already experienced faster drawdown and higher extraction costs in
phase 2, leading to farmers reducing their extractions by the time phase 3 begins. Farmers
extract more before the larger storage capacity is lost in phase 4, leading to higher extractions
when Q is small (large LS impact) compared to the case when Q is large (small LS impact). This
higher pumping increases water-table decline and rises cumulative LS, leaving GDEs’ health

lower in phase 3 for the larger LS-impact (small Q) case (Figure 3(d)).

We further observe (Figure 3(d)) that the GDEs’ health when the LS impact is larger (smaller
Q) suddenly rises above the health level for the case when the LS impact is smaller. This
happens because extractions are lower when the LS impact is larger throughout phase 4
(Figure 3(b)). With a small Q, the extraction costs rise rapidly as LS erodes aquifer storage
capacity, causing farmers to significantly reduce pumping in phase 4. In contrast, when Q is
large and the impact of LS on aquifer storage capacity is small, extraction remains relatively
inexpensive, allowing farmers to maintain higher pumping levels. Likewise, cumulative LS
when the LS impact is larger is lower compared to the case when the LS impact is smaller in

phase 4.
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Figure 3(d). A blow-out of the right panel of the graph in Figure 3(c) for years t = 140 to 240.

We observe (Figure 3(e)) that when LS reduces the aquifer’s storage capacity, the Monte Carlo
results indicate that the system transitions into unhealthy ecological conditions with notable
variability driven by recharge uncertainty. The mean switching time to the unhealthy phase is
=177 years, with a relatively widespread (std = 20.3). The 10th—90th percentile range (145—
198 years) shows that under some recharge realizations the system degrades much sooner,
while in others the transition is delayed by several decades. This sensitivity reflects the strong
influence of recharge variability when storage capacity is reduced. The transition to the severe
unhealthy phase occurs shortly thereafter, with a mean of =191 years and lower variability
(std = 8.3). The narrower percentile range (185-201 years) indicates that once the system
enters the unhealthy regime, its progression toward the severe phase is much less sensitive
to recharge uncertainty. Reduced storage amplifies the pace at which degradation unfolds.
The shift into the critically unhealthy phase occurs at a mean of =208 years, again with
substantial variability (std = 21.8). The 10th—90th percentile interval (188—-239 years) shows
that in some realizations the system reaches critical conditions soon after entering the severe
phase, while in others the transition is more gradual. This reflects the combined influence of

declining water-table levels and accumulating LS on GDEs’ health.
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Figure 3(e). Monte Carlo simulations of optimal paths of groundwater extractions and water

table levels under the effective constant (2 = 0.4) representing the impact of groundwater

extraction on the aquifer system's storage capacity.

To assess how the magnitude of LS impacts on aquifer storage capacity influences the timing
of ecological degradation (Figure 3(f)), we compare the mean Monte Carlo switching times
for the two scenarios: (i) large LS impact on aquifer storage capacity and (ii) small LS impact.
In both cases, switching times represent transitions between the unhealthy (t,), severe
unhealthy (t.), and critically unhealthy (t;) ecological phases. Under the small LS impact, the
mean switching times occur at 176.99 years for entry into the unhealthy phase, 191.49 years
for the severe unhealthy phase, and 207.65 years for the critically unhealthy phase. When the
LS impact is larger, these transitions occur at 175.99 years, 190.85 years, and 203.90 years,
respectively. Comparing the two scenarios shows that a larger LS impact leads to earlier
switching for the first two thresholds, but importantly, an earlier transition into the critically
unhealthy phase. The differences are small for t, (=1 year earlier) and t, (=0.6 years earlier),
indicating that moderate improvements in aquifer storage capacity delay the onset of early
ecological degradation. However, the mean t; shifts from 207.65 years (small LS) to 203.90
years (large LS), indicating that when LS impact is smaller, the system reaches the critically

unhealthy phase ~3.7 years later.
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Figure 3(f). Mean Monte Carlo simulations of optimal paths of groundwater extractions and
water table levels under different values of the constant (£2) representing the impact of
groundwater extraction on the aquifer system's storage capacity.

Note: Yellow solid line shows the empirical constant (2 = 0.4), the black dotted line shows

the increase in the empirical constant (2 = 0.49).

6.3 LS - GDEs Scenario with Taxes

In our model, the parameter [ represents the Pigouvian tax per unit of land sinking. This tax
directly targets LS caused by farmers’ groundwater extractions. We observe (Figure 4(a)) that
a small increase in § do not significantly change the optimal extraction paths because of the
very low compressibility of the Dendron aquifer. For illustration, a very high tax rate of § =
4 Million is used, following Ndahangwapo et al. (2024). We observe (Figure 4(a)) that in
phase 1 (healthy phase), farmers pump aggressively throughout. Extractions rise gradually to
68.3 Mm> (f = 1245), 67.4 Mm?® (B = 3345), and 30.8 Mm® (B = 4 Million). The
system shifts into phase 2 (unhealthy) in years 163 (f = 1245), 170 (f§ = 3345), and 207
(B = 4 Million), where withdrawals rise sharply to 132.4 Mm? (8 = 1245), 125.1 Mm?
(B = 3345), and 102.1 Mm® (B = 4 Million). The continuous increase in extractions
happens because there are no policy interventions, as the tax policy applies only in phases 3
and 4 when LS begins. The severe unhealthy phase (phase 3) is entered in years 197 (f =
1245), 200 (f = 3345),and 214 (f = 4 Million).
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Figure 4(a). Optimal paths of groundwater extractions and water table levels under different
Pigouvian tax rates per unit of land sinking.

Note: Red solid line shows the effective tax rate per unit of land sinking (f = 1,245), the black
solid line shows the increase in the effective tax rate (f = 4 Million), and the green dotted

line shows the empirical tax rates (f = 3,345).

We further observe (Figure 4(a) and Figure 4(b)) that higher tax rates reduce extractions and
delay aquifer storage capacity loss. At the start of phase 3, with a higher tax rate (f =
4 Million), extractions drop by 64.8 Mm?/year (from 102.1 to 37.3 Mm?/year), compared
to 47 Mm?/year (from 132.4 to 85.4 Mm?/year) with a lower tax (8 = 1245). The critical
unhealthy phase (phase 4) is reached later in year 222 with a high tax (8 = 4 Million), versus
year 201 with a low tax (f = 1245), delaying permanent aquifer storage loss. We also
observe (Figure 4(b)) that the water table stays higher from phase 3 under a higher tax, which
is good for groundwater conservation. At the start of phase 4, with a higher tax (f =
4 Million), extractions fall to 11.2 Mm?®/year, compared to 31.1 Mm?/year under a lower
tax rate (f = 1245). The results show that higher tax rates lead to lower extraction levels
and help maintain a higher water table over time. By reducing pumping, the Pigouvian tax
slows groundwater declines and delays the onset of permanent aquifer storage loss.
Economically, the tax is efficient because it internalizes the external costs of land subsidence,

aligning farmers’ decisions with the long-term sustainability of the aquifer.
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Figure 4(b). A blow-out of the left panel of the graph in Figure 4(a) for years t = 170 to 260.

The tax per unit of land sinking (f) directly targets the LS caused by farmers’ groundwater
extractions, which also leads to further degradation of GDEs’ health. By imposing 3, farmers
are encouraged to reduce groundwater withdrawals, which mitigates LS and slows the decline
in GDEs’ health. We observe (Figure 4(c)) that GDEs’ health is higher when a higher tax rate
per unit of land sinking (8 = 4 Million) is applied compared to a lower tax rate (f =
1245). A higher tax rate also delays GDEs’ health from entering the critically unhealthy phase.
Likewise, cumulative LS is lower under a higher tax rate (f = 4 Million) compared to the
case with a lower tax (f = 1245). In conclusion, higher tax rates minimize cumulative LS,
postpone the shift into the critically unhealthy phase, and lead to a higher long-run
equilibrium level of ecosystem health compared to lower tax scenarios. Economically, this
shows that well-calibrated Pigouvian taxes can align private incentives with ecological
sustainability, preserving both aquifer function and GDEs’ health while moderating long-term

extraction costs.
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Figure 4(c). Ecosystem health status and cumulative LS under different Pigouvian tax rates per
unit of land sinking.

Note: Red solid line shows the effective tax rate per unit of land sinking (f = 1,245), the black
solid line shows the increase in the effective tax rate (f = 4 Million), and the green dotted

line shows the empirical tax rates (f = 3,345).

The Monte Carlo results show (Figure 4(d)) that the switching time to the unhealthy phase
occurs, on average, at 188.08 years, with a standard deviation of 18.54 years. This indicates
moderate variability across simulations, and the 10th—90th percentile range (159-207 years)
shows that most realizations fall within this interval. The transition to the severe unhealthy
phase has a mean switching time of 201.25 years and a much smaller standard deviation (8.14
years), meaning this threshold is reached within a relatively narrow window across
simulations. The 10th—-90th percentiles (195-208 years) confirm this tight clustering. The
critically unhealthy phase occurs at a mean of 215.36 years, with a larger standard deviation
(21.64 years) and a broader 10th—90th percentile range (198-247 years), reflecting greater

dispersion in outcomes.
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Figure 4(d). Monte Carlo simulations of optimal paths of groundwater extractions and water

table levels under the effective Pigouvian tax rate per unit of land sinking (f = 1,245).

The switching-time statistics show that higher tax rates per unit of land sinking systematically
delay the onset of ecological degradation across all three thresholds (Figure 4(e)). For B =
1245, the transition to the unhealthy phase occurs at a mean of 158.02 years (std 18.03), with
the 10th—-90th percentile range spanning 133—-178 years. The severe unhealthy threshold is
reached at a mean of 200.42 years (std 7.46), with a relatively narrow percentile interval (195—
208 years), indicating low variability across simulations. The critically unhealthy transition
occurs at a mean of 213.59 years, exhibiting greater dispersion (std 20.08) and a percentile

range of 198-247 years.

For the much higher tax level B = 4 Million, all switching times are substantially delayed. The
unhealthy-phase transition shifts to a mean of 211.29 years (std 13.62, percentiles 191-227),
indicating later onset and reduced uncertainty. The transition to the severe unhealthy phase
occurs at 220.22 years (std 8.10, percentiles 213-231), again showing a tightly clustered
distribution. The critically unhealthy threshold is reached at a mean of 238.86 years, with a
larger spread (std 19.84, percentiles 222—-271), reflecting the increasing influence of recharge
variability at later stages. The case B = 3345 produces the same statistical outcomes as =
1245. Taken together, the statistics show that only the largest tax rate (B = 4 Million)
generates a significant delay in switching times across all phases, whereas moderate tax levels
(B = 1245 and B = 3345) yield nearly identical outcomes. This demonstrates that substantial

tax strength is required to produce meaningful postponement of ecological degradation
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Figure 4(e). Mean Monte Carlo simulations of optimal paths of groundwater extractions and
water table levels under different Pigouvian tax rates per unit of land sinking.

Note: Red solid line shows the effective tax rate per unit of land sinking (f = 1,245), the black
solid line shows the increase in the effective tax rate (f = 4 Million), and the green dotted

line shows the empirical tax rates (f = 3,345).

6.4 LS - GDEs scenario and quotas

Under the LS-GDEs scenario, groundwater extraction quotas act as a regulatory tool to control
LS and safeguard ecosystem health over time. When an effective quota is applied, water table
levels are better conserved compared to lower quota levels, since very reduced extractions
can directly lower crop vyields or livestock numbers, leading to lower revenue. Setting the
guota too high is ineffective, as it permits excessive extraction, causing lower water table
levels, greater LS, and faster GDEs’ health degradation. We observe (Figure 5(a)) that a quota
of 10 Mm3/year is the effective quota level for the Dendron aquifer, consistent with
Ndahangwapo et al. (2024) findings under the LS scenario alone. These results indicate that
well-calibrated groundwater quotas are essential for mitigating aquifer damage and
promoting groundwater conservation, and policymakers should use localized quota

thresholds to balance groundwater use with long-term ecological sustainability.
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Figure 5(a). Optimal paths of groundwater extractions and water table levels under different
guota levels.

Note: Red solid line shows the effective quota level (W = 10), the black solid line shows the
increase in the effective quota level (W = 20), and the green dotted line shows the empirical

quota level (W = 14).

Let us recall that the GDEsHS ranges from 0 to 1. From 1 to 0.5, GDEs are in the healthy phase;
from below 0.5 to 0.35, they are in the unhealthy phase; from below 0.35 to 0.15, they are in
the severe unhealthy phase; and below 0.15, they are in the critically unhealthy phase. We
observe (Figure 5(b)) that applying the effective quota level (W = 10) delays the onset of
both the severe and critical unhealthy phases, while maintaining a higher ecosystem health
status over time. The critically unhealthy phase is reached in year 158 with W = 10, in year
105 with W = 14, and in year 65 with W = 20. Furthermore, we observe that the higher the
quota level, the lower the GDEs’ health level. The onset of cumulative LS marks the beginning
of the severe unhealthy phase (phase 3), where LS starts to occur. Thus, we also observe that
applying the effective quota level delays the onset of cumulative LS, and that higher quota

levels lead to higher levels of cumulative LS.
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Figure 5(b). Ecosystem health status and cumulative LS under different quota levels.
Note: Red solid line shows the effective quota level (VT/ = 10), the black solid line shows the
increase in the effective quota level (W = 20), and the green dotted line shows the empirical

quota level (W = 14).

The results demonstrate that stricter and effective groundwater quotas (e.g., W = 10) are
economically efficient in sustaining ecosystem health and delaying costly LS. Higher quota
levels accelerate ecological decline and increase cumulative subsidence, raising long-term
economic damages. Thus, from a policy perspective, effective quotas not only safeguard
GDEs’ health but also reduce future remediation costs, making them a welfare-enhancing

instrument for managing groundwater resources.
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Figure 5(c). Monte Carlo simulations of optimal paths of groundwater extractions and water

table levels under the effective quota level (W = 10).
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The Monte Carlo results for the quota scenario show (Figure 5(c)) that the water table does
not approach an equilibrium level within the 600-year simulation horizon, nor even within
2,000 years. Instead, the simulated water table height increases continuously, and by the end
of the plotted period it exceeds the irrigation surface level of 1289.5 m a.s.l. This behaviour
arises because groundwater extractions are constrained by the imposed quota (10 Mm? per
year in this case). Whenever a Monte Carlo draw produces a natural recharge rate that
exceeds this quota, the model’s equilibrium extraction level shifts upward. Since the actual
extraction remains fixed at the quota, the system removes less water than it receives, causing
a net accumulation of groundwater over time. This dynamic explains the persistent upward
drift in the water-table paths observed in the figure. This occurs for all quota levels considered

in this paper.

6.5 LS - GDEs scenario and packaging and sequencing of taxes and quotas

The packaging and sequencing of taxes and quotas provides a refined tool for managing
groundwater. It helps to limit LS and sustain GDEs’ health over time. In the severe unhealthy
phase (phase 3), all extractions above the quota are fully taxed. Extractions at or below the
qguota remain untaxed. In the critical unhealthy phase (phase 4), only quotas are used. Once
a quota is imposed in phase 3, it remains in place until the end of the planning horizon. Firstly,
we observe (Figure 6(a)) that under all scenarios of packaging and sequencing, extractions
always exceeded the quota levels in phase 3. As a result, taxes were applied in phase 3 across
all tax—quota combinations. Quotas, in contrast, were only enforced at the start of phase 4.
We further observe that, throughout the planning period, the best combination is a high tax
rate with a low quota level. This combination produces higher water table levels than all other
tax—quota combinations. In the long run, the second best combination is the effective tax rate
and effective quota level, followed by the combination of an increase in the effective tax rate
and effective quota level. In the short run, the second best combination is the increase in the
effective tax rate and effective quota level. We futher observe that after quotas are
implemented (for both tax—quota combinations), the water table drops very gradually (from
H = 1189.5 to the equlibirum level) when both the effective tax rate and low quota level
are applied. This shows that the aquifer is responding to the quota policy, so the water table
does not fall sharply as it does when a higher qupta level is applied (or the effective quota

level increased).
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Figure 6(a). Optimal paths of groundwater extractions and water table levels when taxes and
guotas are combined (under different tax rates and quota levels).

Note: Red solid line shows the effective tax rate and effective quota (f = 1245, W = 10), the
black solid line shows the increase in the effective tax rate and effective quota level (f =
4 Million, W = 20), the green dotted line shows a combination of higher tax rate and a low
quota (f = 4 Million, W = 10), and the light blue dotted line shows a combination of low tax
rate and a higher quota (8 = 1245, W = 20).

In addition, we observe (Figure 6(b)) that the high-tax—low-quota combination provides the
highest GDEs’ health over time. This combination also best delays the onset of the critically
unhealthy phase. Additionally, the same combination results in the lowest cumulative LS
levels over time. The results show that combining a high tax rate with a low quota is the most
effective approach for protecting GDEs and limiting LS in the Dendron aquifer. Economically,
this combination aligns farmers’ private incentives with long-term aquifer sustainability by
discouraging excessive pumping. Policy-wise, it delays the onset of critical ecological stress
and permanent storage loss, reducing future remediation costs. Thus, well-designed tax—
guota policies can simultaneously preserve ecosystem health and maintain groundwater

resources.
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Figure 6(b). Ecosystem health status and LS when taxes and quotas are combined (under
different tax rates and quota levels).

Note: Red solid line shows the effective tax rate and effective quota (f = 1245, W = 10), the
black solid line shows the increase in the effective tax rate and effective quota level (f =
4 Million, W = 20), the green dotted line shows a combination of higher tax rate and a low
quota (f = 4 Million, W = 10), and the light blue dotted line shows a combination of low tax
rate and a higher quota (8 = 1245, W = 20).
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Figure 6(c). Monte Carlo simulations of optimal paths groundwater extractions and water
table levels when the effective tax and the effective quota level are combined (£ =

1245, W = 10).

The same results as in the Monte Carlo results for the quota scenario (Figure 5(c)) occurs here.

We observe (Figure 6(c)) that the water table does not approach an equilibrium level. This
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behaviour arises because, in phase 4, groundwater extractions are constrained by the
imposed quota level. This behaviour makes Monte Carlo simulation unsuitable for the
comparative policy analysis conducted in the remaining sections of the paper. Those sections
require a consistent evaluation of all policy instruments under identical hydrological
conditions, including the ability to identify equilibrium water-table levels and switching times.
For this reason, the subsequent sections of the paper rely solely on deterministic simulations,
where equilibrium dynamics are well-defined and comparable across all management

instruments.

6.6 Comparison of several policy instruments and the associated farmers’ welfare

In this section, we compare different policy instruments, Pigouvian taxes, extraction quotas,
and the combined approach of packaging and sequencing of taxes and quotas, against the
baseline scenario and the LS with GDEs scenario without any policy intervention. Comparisons
focus on effective tax rates and quota levels, as other values are non-viable. We observe
(Figure 7(a)) that quotas alone are the most effective in reducing extractions and keeping
higher water table levels over the planning period. Before t = 126, the quota policy is the
best policy instrument as it outperform all other policy instruments considered by keeping
higher water table levels. From t = 126 to t = 201, taxes alone and the packaging and
sequencing of taxes and quotas are the best instruments. In addition, fromt = 201 to t =
285, packaging and sequencing of taxes and quotas outperforms other considered policy
intruments. After t = 285, quotas becomes the best policy instrument by keeping higher

equilibrium water table levels than all other policy instruments considered.
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Figure 7(a). Optimal paths of groundwater extractions and water table levels under different
policy instruments and scenarios (quotas, taxes, packaging and sequencing, LS and no policy
interventions, and the baseline scenario).
Note: Blue solid line shows the baseline scenario. Green solid line shows the scenario for
packaging and sequencing. The yellow solid line shows the scenario for LS and no policy
interventions. The red solid line shows the scenario for quotas, and the black solid line shows

the scenario for taxes.

We futher observe (Figure 7(a)) that some policy instruments may show lower extraction
levels when approaching the steady state, but if the aquifer was exploited in the past under
those policies, water table levels may still end up lower at steady state. Thus, the baseline
scenario performs the worst in conserving groundwater. This outcome reflects the natural
response time of aquifers. Ndahangwapo et al. (2024) explain that aquifers have a natural
response time, meaning it takes time for recharge or discharge changes to affect water table

levels.

From Figure 7(b), we oberve that the same ranking applies to ecosystem health and
cummulative LS outcomes. Quotas help sustain ecosystem health initially by limiting over-
extraction, but taxes alone and the combined tax-quota approach becomes superior after t =
126 tot = 201, effectively minimizing LS and preserving GDEs’ health. Aftert = 285, quotas
becomes the best policy instrument by keeping higher GDEs’ health levels than all other policy

instruments considered. In addition, the quota policy results in the lowest levels of
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cummulative LS in the long run. From t = 200 to t = 300, combining taxes with quotas
outperforms single instruments, sustaining lower levels of cummulative LS. These results
demonstrate that the quota policy provide a more robust policy instrument, balancing
economic and ecological objectives by reducing extraction pressures, delaying critical
ecosystem stress, and delaying the onset of land subsidence over time. The results suggest
that quotas alone are effective in reducing extractions and maintaining water table levels in
the long term. Policies applied after heavy aquifer exploitation will not fully recover to lower
levels of cummulative LS due to the aquifer’s natural response time, emphasizing the need
for proactive intervention. Overall, the quota policy offer the most robust approach for long-

term groundwater, LS and GDEs’ health management.
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Figure 7(b). Ecosystem health status and LS under different policy instruments and scenarios
(quotas, taxes, packaging and sequencing, LS and no policy interventions, and the baseline
scenario).

Note: Blue solid line shows the baseline scenario. Green solid line shows the scenario for
packaging and sequencing. The yellow solid line shows the scenario for LS and no policy
interventions. The red solid line shows the scenario for quotas, and the black solid line shows

the scenario for taxes.

The farmers’ private welfare is represented by the private net benefit in the baseline scenario,
where only the depth externality is considered. We observe (Figure 8) that farmers obtain

positive net benefits under all three policy instruments, meaning that revenues exceed costs
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across the planning period. Economically, this highlights that policy interventions do not
eliminate profitability but rather redistribute incentives to balance private gains with
groundwater sustainability. The baseline scenario delivers the highest profit to farmers
(0.4032 Million US dollars). Because there are no ecological feedbacks or policy constraints,
farmers extract aggressively to maximize short-run revenue. There are no penalties from LS
or GDEs’ degradation, so private profit is maximized. The second-highest welfare occurs under
the LS—GDEs scenario with no policy interventions (0.3415 Million US dollars). In this case,
farmers still face no policy restrictions, but ecological feedbacks (LS and GDEs) reduce the
effective productivity of pumping by increasing extraction costs. Profit is therefore lower than

in the baseline, but still relatively high because farmers remain unconstrained by regulation.

The third-highest welfare arises under taxes alone and under packaging and sequencing of
taxes and quotas (0.3414 Million US dollars). Taxation internalizes part of the ecological
externality by making extraction more expensive. Farmers optimally reduce pumping to avoid
high extraction or subsidence costs, leading to slightly lower profit. Packaging/sequencing has
similar effects, so welfare aligns closely with taxes alone. The lowest welfare is observed
under the quota policy (0.1395 Million US dollars). Quotas impose a hard cap on extraction
regardless of farmers’ willingness to pay and regardless of short-run profitability. This strict
guantity constraint severely reduces groundwater use, limiting crop production and yielding

the lowest farmers’ welfare among all scenarios.

54



(=
Private welfare without policies I I Private welfare with policies ]

v A
v

o
A

0.35

o
w

0.25

Welfare level (Million US dollars)
(@]
N

0.15
0.1
0.05
o
A2 >
‘3‘56\\0 e(‘“oo \)e,(\o(\ \)0\9 «‘a*e
o \(\\e- 560\
QO\'\O\; N 2
o} O
S A% 2
22X XS
- (_:)0@
1353 N o

1354  Figure 8. Farmers’ private welfare under different policy instruments (taxes, quotas,
1355  packaging and sequencing, LS and no policy interventions scenario, and the private welfare

1356  (baseline) scenario).
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1359  Figure 9. Farmer Disaggregated farm profits time paths under different scenarios (quotas,
1360 taxes, packaging and sequencing, LS-GDEs and no policy interventions scenario, and the
1361  private profits (No LS and no policy interventions) scenario).

1362  Note Blue solid line shows the baseline scenario. Green solid line shows the scenario for
1363  packaging and sequencing. The yellow solid line shows the scenario for LS and no policy
1364 interventions. The red solid line shows the scenario for quotas, and the black solid line shows

1365  the scenario for taxes
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We observe (Figure 9(a)) that across all scenarios, total economic benefits decline over time,
as rising extraction costs make it harder for revenues to exceed costs. Extraction costs rise as
the aquifer becomes more depleted and compaction increases pumping lift, so farm revenues
increasingly fail to keep pace with rising marginal extraction costs. In the long run, the
baseline scenario yields the highest total private economic benefit. Quotas produce the
lowest farm profit. Binding extraction caps limit groundwater use regardless of farmers’
willingness to pay, reducing crop output and leading to the lowest private economic returns

among all scenarios.

LS, GDEs and no policy interventions
— Taxes on LS
Quotas
Packaging and sequencing

\ — Private profits

Welfare level (US dollars)

o 5 10 15 20 25 30 35 40 45

Figure 9(b). A blow-out of of the graph in Figure 9(a) for years t = 0 to 45.

We further observe (Figure 9(b)) that, in the first two years, farmers profit more under the
Tax scenario, the LS—GDEs and no policy intervention scenario, and the packaging-and-
sequencing approach. In early years, the aquifer is still relatively productive, and taxes or
ecological feedbacks do not yet impose sufficiently large extraction costs. Farmers therefore

maintain high pumping and enjoy strong short-run profits.

6.7 Sensitivity analysis (farmers’ welfare)

To see how policy changes affect farmers’ welfare, we run a sensitivity analysis on quotas and
taxes designed to prevent LS, aquifer storage capacity loss, and GDEs’ health deterioration.
Using different values from earlier sections, we observe (Figure 10) that farmers’ welfare rises

when the quota is set at 14 Mm? and even more at 20 Mm3. However, as shown in Figure
q

56



1390
1391
1392
1393
1394
1395
1396

1397
1398

1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411

5(a), very high quotas like 20 Mm?® do not conserve groundwater, even though they raise
farmer profits. This result highlights an economic trade-off. Higher quotas benefit farmers in
the short term but damage aquifers and ecosystems in the long run. For policymakers,
especially in South Africa, the key challenge is to set quota levels that balance private welfare
with groundwater conservation, ensuring sustainable resource use and long-term economic

efficiency.

0.25

0
Welfare level (Million US dollars)

0.05

quota level =10 quota level =14 quota level =20

Figure 10. Farmers' private welfare under different quota levels; the effective quota level
(W = 10), the empirical quota level (W = 14), and the increase in the effective quota level

(W = 20).

A higher Pigouvian tax increases the marginal cost of groundwater extraction by penalizing LS
more heavily. We observe (Figure 11) that, as the tax () rises, farmers reduce pumping
earlier and more aggressively to avoid higher tax payments. This reduction in extraction
lowers agricultural output and farm revenues, which outweighs the ecological benefits
captured in the welfare measure. Consequently, farmers’ welfare falls from 0.3414 Million US
dollars (f = 1245 US dollars) to 0.3376 Million US dollars (f§ = 3345 US dollars) and
further to 0.3189 Million US dollars (§ = 4 Million US dollars), because the tax burden and

loss in production dominate any gains from reduced subsidence.
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Figure 11. Farmers’ private welfare under different values of the Pigouvian tax per unit of land

sinking (f); the effective tax rate (f = 1,245), the increase in the Pigouvian tax per unit of

land sinking (f = 4 Million), and the empirical tax rate per unit of land sinking (f = 3,345).

0.25

Welfare level (Million US dollars)

PR
_AY _AY SO
o i L2

D

Figure 12. Farmers’ private welfare when taxes and quotas are combined (under different tax
rates and quota levels). The effective tax rate and effective quota level (f = 1245, W = 10),
the increase in the Pigouvian tax per unit of land sinking (f = 4 Million, W = 10), and the

increase in the effective quota level (8 = 1245, W = 20).

We observe (Figure 12) that when taxes and quotas are combined, farmers’ private welfare
(0.4032 Million US dollars) declines as the Pigouvian tax per unit of land sinking increases.

Therefore, farmers benefit from this combination only when the Pigouvian tax equals the
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effective tax rate. Economically, this indicates that excessively high Pigouvian taxes lower
farmers’ welfare without providing extra benefits. From a policy perspective, it suggests that
combining taxes and quotas is most effective when the tax is set at the optimal effective rate,

balancing private welfare with sustainable groundwater use and ecosystem health.

6.8 Social welfare with respect to LS-based externalities’ costs

Social welfare is defined as the net benefit once all the negative externalities from LS are
included. To measure this effect under different policy settings, we apply a damage function
that monetarizes LS impacts, meaning it assigns a social cost to the environmental damages
caused by LS. The damage function must be written in terms of the water table changes (4H,
positive when the water table rises, negative when it falls). A negative change leads to LS,
while a positive change means there is no LS. In our model, we adopt the quadratic damage
function from Ndahangwapo et al. (2024): D(AH) =6 - AH +§(AH)2 = %(R - (1-
)W) +§(ﬁ (R— (1 —a)W))?, with § > 0 and T > 0. Here, § and T are scaling
parameters that represent how LS externalities grow as AH become larger. When the change
in water table is positive, the monetarized environmental damage AH +§(AH)2 is also
positive. When the change is negative, the outcome depends on the relative size of § and t.
Specifically, 6 must be substantially larger than t for § > %AH to hold. The social benefits
during the four phases of the GDEs’ health are then given by the modified equation below.

w2 gwr

S~ 73—~ (Co + CLHYW" + §(GDESHS(H, LS(H)))

R-(1-a)W*

+£ﬂR—(1—aWW)+§( —

)? (59)
Once calibrated, we found through simulation that social welfare is always lower than private
welfare, with § = 3 Millionandt = 0.00000002. The results (Figure 13) show that as the
effective tax rate per unit of land sinking rises, social welfare falls significantly below private
welfare. This indicates that a higher tax amplifies the social costs associated with LS
externalities faced by farmers. This finding suggests that tax instruments need careful
calibration. Excessively high tax rates may discourage efficient groundwater use without
necessarily improving welfare, as they increase the burden on farmers while amplifying

measured social costs. Policymakers should therefore balance tax rates to internalize

59



1457
1458

1459
1460

1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479

externalities while still maintaining incentives for sustainable extraction.
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Figure 13. Private welfare (No LS, GDEs and no policy interventions), and social welfare under
different values of the Pigouvian tax per unit of land sinking () and the constant (1)
representing the impact of groundwater extraction on the aquifer system's storage capacity;
the effective tax rate per unit of land sinking and the effective constant (1) (f = 1,245, Q =
0.4, 6 = 5 Million and T =0.00000004), the increase in the effective tax rate per unit of land
sinking (8 = 4 Million, 0 = 0.4, § = 5 Million and T =0.00000004), and the effective tax
rate per unit of land sinking and the increase in the constant () (f = 1,245, Q2 = 0.49, 6 =
5 Million and T =0.00000004).

When the effective constant (£2), which represents the impact of groundwater extraction on
the aquifer system’s storage capacity increases, social welfare reduces by 0.0001 Million US
dollars (from 0.3406 Million US dollars to 0.3405 Million US dollars) (Figure 13). A higher value
of 2 implies a smaller LS —impact on aquifer storage capacity. Therefore, the more the storage
capacity is not affected by LS, societal welfare reduces slightly. When LS has little effect on
aquifer storage capacity (large Q), extraction remains relatively cheap because subsidence
does not significantly reduce the aquifer’s ability to store and transmit water. Farmers
therefore extract more groundwater, generating higher cumulative LS and greater long-term
ecological damage to GDEs. Although short-term extraction profits may rise slightly, the
increased ecological degradation reduces total social welfare, leading to a small overall

decline in welfare when the aquifer is less sensitive to subsidence like the Dendron aquifer.
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Figure 14. Private welfare (No LS, GDEs and no policy interventions), and social welfare under
different quota levels; the effective quota level (W = 10, § = 5 Million and T =0.00000004),
and the increase in the effective quota level (W = 20, § =5 Million and T =0.00000004).

For the quota policy, we observe (Figure 14) that social welfare increases by 0.1336 Million
USD, rising from 0.1395 Million USD to 0.2731 Million US dollars, when the effective quota
level is raised. This improvement occurs because the additional water allocation is directed
toward higher-value agricultural uses, which enhances overall productivity. These results
highlight that well-calibrated quota adjustments can generate significant welfare gains by
ensuring that scarce groundwater is allocated more efficiently. In addition, a balanced
approach, linking quota levels to aquifer and GDEs’ health indicators or coupling them with
incentives for adopting water-efficient farming technologies could maximize welfare while

maintaining sustainability.
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Figure 15. Social welfare when taxes and quotas are combined (under different tax rates and
quota levels). The effective tax rate and effective quota level (f = 1245,W =10, § =
5 Million and T =0.00000004), the increase in the Pigouvian tax per unit of land sinking (f =
4 Million, W = 10, § = 5 Million and 7 =0.00000004), and the increase in the effective
quota level (8 = 1245,W = 20, § = 5 Million and 7 =0.00000004).

For packaging and sequencing of taxes and quotas, we observe (Figure 15) that when taxes
and quotas are combined, social welfare ( from 0.3406 Million US dollars to 0.3183 Million
US dollars) decreases as the Pigouvian tax per unit of land sinking increases. This decline
indicates that the interaction between the quota constraint and rising Pigouvian taxes
generates additional economic inefficiencies, reducing overall welfare instead of improving it.
These results suggest that layering taxes on top of quotas without proper calibration can
undermine social welfare, as the two policies may overlap in their corrective function.
Policymakers should therefore carefully evaluate whether combining instruments is
necessary. In contexts where quotas already constrain water extraction effectively, additional

Pigouvian taxation may not only be redundant but also welfare-reducing.

7. Extension of the model (change of the threshold tipping points)
A key element of our groundwater-GDEs modeling framework lies in the specification of the
critical thresholds for ecosystem health (8, p, y) and for the water table height (H,, H., Hy).
These critical thresholds determine the timing of phase transitions in the aquifer—ecosystem

system and, consequently, shape the dynamics of groundwater extraction, LS, and ecosystem
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health outcomes. However, these parameters are inherently uncertain, both empirically and
ecologically, as they depend on site-specific hydrological conditions, ecosystem resilience,
and the socio-economic valuation of ecosystem services. Conducting sensitivity analysis is
therefore essential to assess the robustness of our results. By varying the critical thresholds
around their empirical baseline values, we can evaluate how shifts in ecosystem resilience
(health tipping points) and hydrological stress points (water table thresholds) alter the timing
of regime shifts, the path of extractions, aquifer depletion, and ultimately the evolution of

GDEs’ health.

7.1 sensitivity analysis of the critical thresholds
In general, we expect that increasing the values of the GDEs’ health thresholds, i.e., assuming
ecosystems are more fragile, will lead to earlier onset of unhealthy, severe unhealthy, and
critical unhealthy phases, reducing the time horizon for sustainable groundwater use.
Conversely, lowering these thresholds, implying greater resilience, should prolong the healthy
phase, delay transitions, and sustain higher levels of social welfare over time. Similarly, higher
values of the water table thresholds are expected to accelerate compaction processes and
health deterioration, whereas lower thresholds should delay these transitions and moderate
the severity of ecosystem stress. Overall, this sensitivity analysis allows us to test the stability
and robustness of our optimal paths’ results, highlight the importance of ecological resilience
for groundwater policy design, and identify which parameters exert the strongest influence

on long-run aquifer-ecosystem sustainability.

For the sensitivity analysis, we only use the effective quota level, effective tax rate, and the
empirical constant (2 = 0.4). We set a short horizon of 250 years to estimate aquifer
depletion. This longer horizon is more useful for policymakers to understand differences
between scenarios (Esteban et al., 2021). Our policy instruments, tax, packaging and
sequencing, and the LS-GDEs and no policy intervention, show similar water table and
extraction levels within the 20-year period used by Esteban et al. (2021), necessitating our

extended horizon.

7.1.1 Scenario with Land Subsidence, GDEs, and No Policy Intervention

Table 2 (in Appendix 19) shows how varying the GDEs’ health thresholds and water-table
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thresholds affects the optimal outcomes under the LS—GDEs—no-policy scenario. Under the
empirical thresholds (6 = 0.5, p = 0.35, y = 0.15; H,, = 1200.5, H, = 1191.5, H; = 1189.5), the
equilibrium water table height is 1177.53 m.a.s.l, aquifer depletion is 164.8 Mm?3, and total
social welfare is 0.3415 Million US dollars. Lowering the GDEs’ health thresholds (6 =0.4, p =
0.3,y =0.1) yields a slightly higher water table (1177.65 m.a.s.l), slightly lower depletion (164
Mm?3), and a small welfare gain (0.3419 Million US dollars), while delaying the severe and the
critically unhealthy phases because more resilient ecosystems tolerate drawdown for longer.
Raising the health thresholds (6 =0.7, p = 0.4, y = 0.2) produces a marginally lower water table
(1177.4 m.a.s.l), higher depletion (165.68 Mm3), and slightly lower welfare (0.3414 Million US
dollars), with earlier switching time for the critically unhealthy phase, and delayed unhealthy
phase. Lowering the water-table thresholds (H_u=1195.5,H _c=1190.5, H_T =1184.5) raises
welfare to 0.3482 Million US dollars and reduces depletion to 162.3 Mm3, with delayed
unhealthy phase and the critically unhealthy phase, as well as an early severe unhealthy
phase. Conversely, raising the thresholds (H,, = 1205.5, H. = 1196.5, H; = 1192.5) yields the
lowest welfare (0.3349 Million US dollars) and the lowest depletion (150.64 Mm3), with

delayed transitions into the GDEs’ health phases.

7.1.2 LS - GDEs Scenario with Taxes
Table 3 (in Appendix 19) shows tah the empirical critical thresholds (6 = 0.5, p =0.35, y = 0.15;
H, =1200.5, H, = 1191.5, Hy = 1189.5) yield an equilibrium water-table height of 1179.10
m.a.s.l, aquifer depletion of 158 Mm?3, and social welfare of 0.3414 Million US dollars.
Lowering the GDEs’ health thresholds (6 = 0.4, p = 0.3, y = 0.1) produces nearly identical
outcomes, 1179.04 m.a.s.l, 159 Mm3, and 0.3415 Million US dollars. The switching times shift
only minimally, indicating that under a tax regime ecological resilience has very small leverage
over long-run hydrology or welfare. Raising the health thresholds (6 = 0.7, p = 0.4, y = 0.2)
similarly produces only slight changes, 1178 m.a.s.l, 160 Mm3, and 0.3413 Million US dollars,
with switching times again showing negligible movement. Adjusting the water-table
thresholds yields somewhat more visible effects: lowering them (H,, = 1195.5, H, = 1190.5,
H; = 1184.5) increases welfare to 0.3477 Million US dollars and yields 160 Mm?3 depletion,
while raising them (H,, = 1205.5, H, = 1196.5, H; = 1192.5) lowers welfare to 0.3347 Million

US dollars and reduces depletion to 146 Mm3. Across all cases, the switching times change
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only marginally, confirming that Pigouvian taxes dominate the timing of transitions, and
adjusting the ecological thresholds produces small, second-order variations. Economically,
the tax internalises subsidence damage so strongly that the system’s optimal path is governed
primarily by the tax rate itself; changes in ecological fragility only slightly perturb the timing

of transitions and long-run welfare.

7.1.3 LS - GDEs scenario and quotas
Table 4 (in Appendix 19) shows that under the quota policy, the imposed extraction cap
dominates system behaviour, resulting in almost identical long-run hydrological and
economic outcomes across all sensitivity cases. With the empirical thresholds (6 = 0.5; H, =
1200.5), the equilibrium water table height is 1186.47 m.a.s.l, aquifer depletion is 150.8 Mm?3,
and total welfare is 0.1395 Million US dollars. The switching times are t, = 126, t, = 155, and
tr = 161.

It is worth mentioning that the optimal solutions only contains 6 and H,;, and not other critical
thresholds. Lowering the GDE health thresholds (6 = 0.4) does not change any optimal
outcomes: the equilibrium water table remains 1186.47 m.a.s.l, depletion remains 150.7
Mm?3, welfare stays at 0.1395 Million US dollars, and all switching times shift only slightly to
tu=126, t. = 144, ans t; = 161. This occurs because 6 affects only the ecological penalty term
in phase 1, but the quota binds extraction so tightly that behaviour cannot adjust in response.
Raising the GDE health thresholds (& = 0.7) also produces identical hydrological and economic
outcomes, equilibrium water table 1186.47 m.a.s.|, depletion 150.7 Mm3, welfare 0.1395
Million US dollars, with almost unchanged switching times (126, 145, 163). Since the quota
fixes total pumping throughout, farmers cannot respond to ecosystem fragility by reducing
extraction; thus only the timing of ecological transitions shifts slightly. The water-table
threshold cases show the same rigidity. Lowering the water table thresholds (H, = 1195.5)
leaves the equilibrium water table (1186.47 m.a.s.l) and welfare (0.1395 Million US dollars)
unchanged, with switching times moving to t, = 132, t. = 151, while t; is not reported
(because the quota-driven trajectory never reaches inelastic compaction). Raising the
thresholds (H, = 1205.5 m.a.s.l) yields a nearly identical equilibrium (1186.5 m.a.s.l), depletion

(150.7 Mm?), and welfare (0.1395 Million US dollars), with earlier transitions (t, = 119, t, =
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131, t; =136) because the system crosses the higher thresholds sooner.

7.1.4 LS - GDEs scenario and packaging and sequencing of taxes and quotas
Table 5 (in Appendix 19) shows that, with the empirical thresholds (6 = 0.5, p =0.35, y = 0.15;
H, =1200.5, H. =1191.5, H; = 1189.5), imposing the quota only in phase 4 produces a much
higher equilibrium water table (1184.8 m.a.s.l), lower depletion (144.6 Mm?3), and lower
welfare (0.3414 Million US dollars). Varying the GDEs’ health thresholds has only small
changes from the lone tax policy results because the quota policy in phase 4 depends only on
y. Lowering the thresholds (6 = 0.4, p = 0.3, y = 0.1) keeps the equilibrium water table (1184.8
m.a.s.l) and depletion (144.6 Mm?3) almost unchanged and slightly increases welfare to 0.3415
Million US dollars. The switching times also shift only marginally: the unhealthy phase occurs

earlier, and the severe unhealthy phases occur slightly later.

Raising the GDEs’ health thresholds (6 =0.7, p = 0.4, y = 0.2), making ecosystems more fragile,
produces almost no change in the equilibrium water table (1184.7 m.a.s.l), slightly increases
depletion (145 Mm3), and reduces welfare slightly to 0.3413 Million US dollars. Here, the
switching times adjust modestly in the opposite direction: the severe unhealthy and critically
unhealthy phases begin slightly earlier. Changing the water-table thresholds has clearer
effects because these thresholds determine when compaction begins and, crucially, when the
phase-4 quota is activated. Lowering the thresholds (H,, = 1195.5, H. = 1190.5, H; = 1184.5)
brings earlier the onset of elastic compaction and delays inelastic compaction. As a result,
farmers can pump more before entering phase 4, causing depletion to rise to 160 Mm? and
welfare to increase to 0.3477 Million US dollars, while the equilibrium water table declines
slightly to 1182.53 m.a.s.l. Conversely, raising the thresholds (H,, = 1205.5, H. = 1196.5, H; =
1192.5) makes the aquifer more fragile to compaction and triggers the unhealthy phase
earlier. The severe unhealthy and the critically unhealthy phases are delayed. As a result,
depletion falls sharply to 132 Mm3, welfare decreases to 0.3347 Million USD, and the

equilibrium water table becomes higher (1187.8 m.a.s.l).

8 Conclusion and Policy Implications

This study assessed the performance of Pigouvian taxes, extraction quotas, and the packaging
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and sequencing of taxes and quotas in managing land subsidence (LS) and sustaining
groundwater-dependent ecosystems (GDEs) in the Dendron aquifer under a unified LS—-GDEs
framework. The results reveal clear and policy-relevant trade-offs between private welfare,
social welfare, aquifer depletion, and ecosystem health. Across all scenarios, the baseline (no
LS and no GDE feedbacks) generates the highest private welfare but also the lowest long-run
water table levels and the greatest aquifer depletion, confirming that unregulated pumping

is incompatible with long-term hydrological and ecological sustainability.

Quotas, applied throughout the horizon, remain the most effective instrument for
maintaining higher water table levels and substantially reducing aquifer depletion, although
they impose the largest private welfare losses relative to alternative policies. Taxes alone
generate higher short-run private benefits but do not reduce extractions sufficiently to
prevent long-run declines in the water table. The analysis shows that Pigouvian taxes
internalise LS damages, but large tax increases depress both private and social welfare

without corresponding ecological gains.

The packaging and sequencing of taxes and quotas with Pigouvian taxes in phases 1-3 and
quotas only in phase 4, consistently emerges as the most balanced policy option. This
combined approach delivers higher welfare than quotas alone, prevents the sharp long-run
declines observed under taxes alone, and yields intermediate extraction and water-table
paths that stabilise earlier than in the single-instrument cases. Importantly, because the
guota binds only in phase 4, welfare losses are moderated while long-run groundwater
protection is preserved. The switching-time patterns observed in the sensitivity analysis
qualify and refine the policy comparison rather than overturning it. Changes in the GDEs’
health thresholds and water-table thresholds shift the timing of entry into the unhealthy,
severe-unhealthy, and critical phases in non-linear ways, but the combined tax—quota policy
continues to deliver balanced extraction and water-table paths and to prevent persistent,
deep declines in groundwater levels. In particular, the phase-4 quota consistently acts as a
hard cap on extractions once the system enters the critical unhealthy phase, even when

ecological and hydrological thresholds are perturbed.

The sensitivity analysis of the GDEs’ health thresholds (6, p, y) and the water-table thresholds
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(Hy, H., Hy) further shows that relatively small changes in these critical values can generate
noticeable shifts in long-run welfare, and aquifer depletion. Depending on the parameter
configuration, transitions into stressed phases can be brought forward or pushed back, and
welfare can rise or fall, underscoring the importance of ecological resilience and aquifer
morphology in shaping optimal policy design. Across all scenarios and parameter variants,
equilibrium social welfare remains systematically lower than private welfare because LS—GDE
damages impose external costs not internalised by individual farmers, reinforcing the case for

regulatory intervention through taxes, quotas, or their combination.

Taken together, the results demonstrate that no single policy dominates across all metrics,
but integrated and adaptive approaches, particularly the packaging and sequencing of taxes
and quotas—offer the strongest long-term protection against aquifer depletion, LS, and GDE
degradation while maintaining reasonable welfare outcomes. For South African groundwater
governance, these findings emphasise the importance of calibrating Pigouvian taxes at
effective levels, setting quotas within sustainable bounds, and coordinating instruments
across ecological phases. Such targeted and combined policies provide the most sustainable
and welfare-preserving pathway for managing the Dendron aquifer and similar groundwater

systems facing coupled hydrological-ecological risks.
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Appendix

Appendix 1. Construction of the GDEs’ health status (GDEsHS) function

The health of GDEs depends on one key groundwater attribute, among others: depth to the
water table (Clifton and Evans, 2001). Depth to the water table is quantified as the difference
between the elevation of the irrigated field surface and the height of the water table, S; — H.
Several papers have defined ecosystem health as a function of the depth to the water table
(Esteban et al., 2021; Esteban and Dinar, 2016). The higher the depth to the water table, the
lower the health level of the GDEs. Alternatively, GDEs health can be expressed as a function
of the water table height (Esteban et al., 2021). In this study, we examine GDEs health as a
function of water table height, where a decline in water table height corresponds to a decline
in ecosystem health. We assume the aquifer is at full capacity when the water table height
equals the surface elevation, that is, S; = H (Esteban et al., 2021). Intuitively, a full aquifer
implies that the GDEs’ health is in its pristine (unaltered or undisturbed) state. Building on the
framework proposed by Esteban et al. (2021), we define GDEs’ health as occurring in four
distinct phases. Phase 1 is the healthy phase, during which GDEs are fully functional, and all
ecological and hydrological processes are functioning in a stable, undisturbed, and
ecologically ideal state, supporting long-term sustainability without intervention. Ecological
processes are the natural interactions and functions that sustain ecosystems and the
organisms within them. Phase 2, the unhealthy phase, reflects a state where some ecological
processes are not efficient or disrupted. In Phase 3, the severe unhealthy phase, GDEs
experience major or severe functional impairment, with key or essential ecological processes
significantly compromised. Finally, Phase 4, the critical unhealthy phase, represents a state in
which essential ecological processes have largely ceased or critically impaired, indicating that
the GDE is on the verge of complete failure. The GDEs’ health status (GDEsHS) functional

represents the condition or level of health of GDEs.

We have four parameters that define the GDEsHS functional throughout the aforementioned
four phases, 0 <y < p < § < 1. We define the health level 1 as the pristine state of the
GDEs, corresponding to their condition when the aquifer is full (Esteban et al., 2021). Between

1 and §, the GDEs are relatively healthy (healthy phase). The parameter § represents the
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GDEs’ health critical threshold (or tipping point) beyond which the GDEs’ health switches to
the unhealthy phase. Between § and p, the GDEs are unhealthy (unhealthy phase), during
which a decreasing water table height caused by groundwater extraction is the sole driver of

GDEs’ health stress.

The parameter p represents the GDEs’ health critical threshold beyond which the GDEs’
health switches to the severe unhealthy phase, where land subsidence is occurring due to
elastic compaction. Between p and y, the GDEs are severely unhealthy (severe unhealthy
phase), during which a decreasing water table height coupled with LS (elastic compaction),

both caused by groundwater extraction, simultaneously drive GDEs’ health stress.

The parameter y represents the GDEs’ health critical threshold beyond which the GDEs’
health switches to the critical unhealthy phase, where land subsidence is occurring due to
both elastic and inelastic compaction. Between y and zero, the GDEs are critically unhealthy
(critical unhealthy phase), during which a decreasing water table height, coupled with LS (both
elastic and inelastic compaction) and aquifer system storage capacity loss, all caused by
groundwater extraction, simultaneously drive the GDEs’ health stress. We assume that the
GDEs’ health level must drop to zero when the aquifer is fully depleted (H = Hjg), regardless
of the level of LS experienced at that point in time t. That is, GDEs extinguish when the water
table height is equal to the bottom (Hg) of the aquifer. Following Esteban et al. (2021), we
further assume that at each critical threshold, the GDEs health status functional is continuous,

taking the same value from both the left and right sides of the function.

In addition, we have three critical thresholds for the water table height that define the
GDEsHS functional throughout the aforementioned four phases: Hr < H. < H,,. The water
table height H,, represents the critical threshold for the water table height beyond which the
GDEs’ health switches to the unhealthy phase. Between H,, and H_, decreasing water table
height, which is caused by groundwater extraction, is the sole driver of GDEs’ health stress.
The water table height H, represents the critical threshold for the water table height beyond
which the elastic compaction phase begins. That is, land subsidence caused solely by elastic
compaction begins when H, is surpassed. Between H. and Hy, the GDEs’ health stress is

simultaneously driven by decreasing water table height and land subsidence caused by elastic
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compaction. The water table height H; represents the critical threshold for the water table
height beyond which the inelastic compaction phase begins. Below H;, the GDEs’ health
stress is simultaneously driven by decreasing water table height, land subsidence caused by
both elastic and inelastic compaction, as well as aquifer system storage capacity loss. The
water table height Hg represents the bottom of the aquifer. As a results, we define the GDEs
health status functional for the healthy phase (phase 1) as suggested by Esteban et al. (2021)

as follows below.

6-1

(S,—H)?+1, H=>H, (60)

Since § < 1, then § — 1 < 0, and we observe that the denominator in the expression is also
strictly greater than zero since S; > H,,. Therefore, the GDEs’ health status is a negative
quadratic in H. The above function is a downward opening parabola, decreasing gradually as
the water table height decreases. When the water table height is equal to S; (no water stress
as the aquifer is full), the GDEs’ health is in its pristine state with a health level equal to 1. As
H reduces, the GDEs’ health status decreases quadratically from 1 towards §. When the water
table height reaches H,,, the GDEs’ health state is equal to §. We define the GDEs health status

functional for the unhealthy phase (phase 2) as follows below.

GDESHS(H) = —>2— . (§,— H. — (S, — H))? + p

(Hu_HC)Z
_ _6-p
(Hu_Hc)z

-(H—H.)*+p, H,<H<H,. (61)

Since § > p, then § — p > 0, and we observe that the denominator in the expression is also
strictly greater than zero since H,, > H,. Therefore, the GDEs’ health status is a positive
quadratic in H. The function decreases as the water table height decreases. The GDEs’ health
status decreases from § towards p as H reduces. When the water table height is equal to H,,,
the GDEs’ health level is equal to §. When the water table height is equal to H,, the GDEs’

health state is equal to p.

The GDEs’ health status functionals for both phase 1 and phase 2 are not affected by LS. The
depth to the water table used to construct their health functionals is defined by: Depth =
S; — H, where S is the irrigation surface elevation, and H is the water table height. In phase
3 and phase 4, GDEs’ health stress is simultaneously driven by a decreasing water table height

and LS. When LS occurs, the ground surface physically lowers. That is, the value of §; changes
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(decreases) as LS progresses. Therefore, if S; is dynamically updated to reflect the current
ground surface elevation (i.e., to include the effect of LS), the effective depth to the water
table at any time is given as follows below.
Depth = S, — LS(H) — H. (62)
This formulation reflects that even if H, remains constant, an increase in LS(H) results in a
larger effective depth, which imposes stress on GDEs. The function LS(H) represents the
cumulative LS (in meters) that has occurred since surpassing the critical threshold H,. up to
and including time t.
LS(Hy=-n-¢-b-y-(H—-—H;), H<H,. (63)
Where H, 1, b, Y, and ¢ represent the water table height at time t, the density of water, the
aquifer system’s thickness, the aquifer system compressibility, and the acceleration due to
gravity. As H decreases, H — H. < 0 and LS(H) > 0, which reflects a positive cumulative LS.
Subsidence begins only once the H, is surpassed and increases as H falls farther below H..
Take note that the cumulative LS is always greater than or equal to zero. If LS(H) =0, it
means that there is no cumulative LS from the onset of compaction (i.e., from when H first
dropped below H_) up to the current time t. Either previously induced land sinking has been
completely offset by land uplift, or the land surface elevation has returned to its original (pre-
compaction) level, i.e., the elevation at the time H was equal to H.. The latter can only happen
if all the compaction was elastic (i.e., reversible), and the water table has recovered back to
H,. or higher. Even if water returns to pre-extraction levels, it is difficult to fully recover
previously induced land sinking in most aquifers. In some regions, even when groundwater
levels rise, the land surface does not immediately rebound, but continues to subside (Wang
etal., 2013; Zhang et al., 2013). Even if groundwater returns to pre-extraction levels, the uplift
is usually small and does not fully reverse the previous LS (Zhang et al., 2012; 2015a). This
delayed response of land uplift relative to water table recovery is influenced by the geological
properties of the soil and aquifer system (Jin et al., 2014). If any inelastic compaction has
occurred, LS(H) = 0 is no longer physically possible. If LS(H) < 0, the land uplifted beyond
its original elevation because LS(H) moved from being equal to zero (when all the cumulative
land sinking experienced in the past were offset to no land sinking occurred before) to
negative, which is not physically realistic in most real-world aquifer systems (Wang et al.,
2013; Zhang et al., 2013). Therefore, the maximum amount of LS(H) the aquifer system can

experience is less than or equal to H. — H at any time time step. Land compaction is caused
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by a reduction in H. Even if delayed compaction occurs, it still originates from past drops in

H, not independently.

In phase 3 (the severe unhealthy phase), GDEs’ health stress is simultaneously driven by a
decreasing water table height and LS caused by elastic compaction. As a result, we define the
GDEs health status functional for the severe unhealthy phase as follows below.

GDEsHS(H,LS(H)) = % (H—LS(H) — Hy + LS(H;))? +y, Hr < H < H... (64)

Whered,. = H. — LS(H,) — Hr + LS(Hy), LS(H,) = LS(H(t.)), and LS(Hy) = LS(H(t7)).
Since p > y, then p —y > 0, and we observe that the denominator in the expression is also
strictly greater than zero. Therefore, the GDEs’ health status is a positive quadratic in H —
LS(H). The function decreases as the water table height decreases and cumulative LS
increases. The GDEs’ health status decreases from p towards y as H reduces and cumulative
LS increases. When the water table height is equal to H, and cumulative LS is equal to LS(H,.),
the GDEs’ health level is equal to p. When the water table height and cumulative LS are equal

to Hy and LS(Hy), respectively, the GDEs’ health state is equal to y.

In phase 4 (the critical unhealthy phase), GDEs’ health stress is simultaneously driven by a
decreasing water table height and LS caused by both elastic and inelastic compaction. Another
extra factor that adds on the GDEs’ health stress in this phase is aquifer system storage
capacity loss. We define the GDEs health status functional for the critical unhealthy phase as
follows below.

wmmeszagxndam—@+wmw%H<m.@)
T

LS(H(tr)). Since ¥y > 0, and we observe that the denominator in the expression is also
strictly greater than zero. Then, the GDEs’ health status is a positive quadraticin H — LS(H).
The function decreases as the water table height decreases and cumulative LS increases. The
GDEs’ health status decreases from y towards zero as H reduces and cumulative LS increases.
When the water table height is equal to H; and cumulative LS is equal to LS(Hy), the GDEs’
health level is equal to y. When the water table height and cumulative LS are equal to Hg and

LS(Hg), respectively, the GDEs’ health state is equal to zero.
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Storage capacity loss does not affect GDEs’ health directly like depth to water table or land
subsidence. But it undermines the aquifer system’s ability to sustain water availability, making
ecosystems more vulnerable. In phase 4 of the GDEs’ health state functional, there is no
explicit parameter representing aquifer system storage capacity loss. However, this loss
naturally coincides with permanent land subsidence due to inelastic compaction, which
occurs when collapsed pore spaces are permanently lost. Notably, in this phase, inelastic
compaction contributes to land subsidence that is several times greater than that caused by
elastic compaction (Sneed, 2001; Smith et al., 2017; Smith and Majumdar, 2020). It is,
however, worth mentioning that inelastic compaction, measured as vertical ground
deformation in meters, is not an exact measure of aquifer system storage capacity loss, which
is measured in cubic meters. As a result, storage capacity cannot be directly incorporated into
the GDEs’ health functional, which is based on vertical measures such as H and LS. Instead,
the precise representation of storage capacity loss will be introduced later in the model,
particularly in the groundwater dynamics equation of phase 4, where storage capacity is a key
component. Moreover, the economic value of this storage loss will be accounted for in the

sections on taxes, as well as the packaging and sequencing of taxes and quotas.
Appendix 2. Detailed solution of the fourth sub-problem on taxes

The hamiltonian function of the system (9), (10), (11) is given as follows

wi

Ho(t, Wy, Hy, Ay) = _e_it[Zk

W,
- gT4 - (CO + ClH4)W4 +

o[ 14

((1+nebyp)(HT—Hp))?
- (Hy + nebyp(H, — H,) — Hg — nebyp(Hp — H,))?]

+% [R—(1—-a)W,]+byr(1—n+n,)[R—(1—-a)W,]

R+(a—1)W,]

(2 =2 = Gy — CH] + Ay - (66)

Equation (66) can be rewritten as follows.

. 2
Ho(t, Wy, Hy, Ay) = _e_lt[vzv_,t - % — (Co + CtH )W, + G (H, — Hp)?
_ 2
+65W4 - G3 (1 a)W4 - G3RC1H4 + 63(1 - 0{)61W4H4 + G4_]
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[R+(a—1)W,]

A s ©7)
Where
_ Bneby
Gy == — (68)
G; = byr(1 —n+ny,). (69)
G4 == _RQGS - RCOG3 + GzR. (70)
Gs — RTG3 + (1—c:c)g63 + G3(1 _ a)CO — Gz(l — a)_ (71)
___ by
Ge = [Hr—Hp]?’ (72)
Hence, the first order conditions are as follows
OHa _ _ —it[(L(l_“))W4 —%_Cy—CH, + G5 + Gs(1 — a)C, Hy]
W, k k
-1
+2,[52] = 0. (73)
] — 67-[4
Ay =—32 (74)
. 1
H, = oS [R+ (a — DHW,]. (75)

The transversality condition is given by lim;_,,,4,(t) = 0. From Equation (73), we obtain the

value for the costate variable 4, as follows.

Q _; 1-2G3(1—
Ly = e U [(FEED W, — L ¢ - € H, + Gy + Go(1— )i H,),  (76)

m

wherem = %. The derivative of A, with respect to t is given by

. Q _; iGgW, i . . .
/14 = —€ lt[_#+ﬁ+lCO_lG7C1H4_lGS
m k k
GgW,
k

G7C1R + G7C1m

+
Q-AS Q

W, +——1. (77)
Where,
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G, =Gs(1—a)—1 (78)

The derivative of H, with respect to the water table height H, is given by
- 9H = —e [GSRC:l - G7C]_W4_ + ZGGHB ZG6H4]. (80)
4

From Equation (74) and (77), we obtain the following equation.

O iGgW, ig | . .
_G3RC]_ + G7C:lW4 - ZG6HB + 266H4 = E [_ k + ? + lCO - G7lClH4_ - lGS

GgW,

|- (81)

G7C1R + G7C1m

+ Q-AS Q

w, +

Solving for W, in the above equation we get the following equations.

QGgW, _ QGgiw,

QC1G5iH Qi QiCy . QIG
+ — 4+266H4——g——°+—5
mk mk m mk m m
_m - G3RC]_ - ZG6HB (82)
GgW4 GgiW4_ C G . 2mG6H4 lg . . G7ClR mG3C1R 2mG6HB
—_— == iH+————=—iCy +iG: — — - 83
k P UL k ot 105 ASQ Q Q (83)
. . ikC1G;Hy = 2mkGgH, ig ikCoy . ikGs G;kCiR  mKkG3RC, , 2mkGgHp
w, =iw, + + -_——_— - - + 84
4 4 Gg QGg Gs  Gg Gg QASGg QGg Gg (84)
. . ikC1G; . 2mkGe ig ikCy = ikGs kG,CiR mkG3sRC;  2mkGgHp
wW,=iw,+|—+—=H, + [——— — - - - 85
4 ot Gg QGg 1H, + [ Gs  Gg Gg QASGg QGg Gg 1 (85)
Likewise, the value for H, can be rewritten as
. a-1)W. R
g, =%, R (86)

Q-AS Q-AS"

Consequently, we now have to solve the two simultaneous differential equations ((85) and

. (a-1) ikC1G; | 2mkGg ig ikCy . ikGs kG;CqR
. Thus, by lettingmm =—uu=—-—+——NN=—->——7+—"2——"—
(86)) 5, Dy letting QAs’ Gg + OGg '’ Gg Gg Gg QASGg
mkG3RC 2mkGgH R . . . .
e -8 and MM = —, we get the following system of differential equations.

OGg Gg QAS’

W, = iW, + uu - H, + NN. (87)
H,=mm- W, + MM. (88)
Putting the above system of differential equations in a D operator format (where D = %), and

solving for W, yields the following second order linear non-homogeneous differential
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equation.

[(D? — Di) — uu - mm]W, = uu - MM. (89)
The particular solution of the above differential equation is given by: —% and the solution
to the homogeneous differential equation ([(D? — Di) — uu - mm]W, = 0) by

W5(t) = MAet™: + MBe'*z, (90)

where x;, = are the characteristic roots. The parameters MA and MB are

i+Vi2+4uumm
2

constants to be determined by imposing the initial conditions. Substituting the right hand side

(RHS) of (90) for W,(t) in the homogenous DE (H, = mm - W,) and integrating gives the

solution for the water table level H,(t) as follows.

mm-MA mm-MB
——et1 4 ——el¥2,

Ha(t) = ™2 - o1)
Furthermore, the steady state level water table is given by

H; = [ 92
2 =[] (92)

Hence, the solution for W, (t) and H,(t) are given as follows, respectively.

* — M Aatx NV Ratx, _ MM
W, (t) = MAe*™** + MBe'*2 — (93)
MB M—NN

HZ(t) _ mm MA ¢y + mm-MB ¢y, + — (94)

Similarly to Gisser and Sanchez (1980) results, it is worth mentioning that +4uumm > 0 since
k<0,(;<0,i>0A4>05>0,0>0,H; >0,H>0,¢>0,6>0,y>0,n>0,¢>
0,b>0,>0,r>0,n>0,n,>0,63>0,6G,<0,Gg>0,6G,>0,a<1= (a—

lkClG7(a—1)

1)< 0 or (1—a) >0, and m < 0. Furthermore, we observe that oase > 0 and
8

2mkGeg(a—1) ikC1G7(a—-1) 2mkGe(a—1) . _

T orAsa, < 0. It can also be proved that (ASGy > 04sGy Hence, +4uu - mm =

[ik6167(a—1) 2mkGe(a—1)
QASGg O2ASGg

] > 0. This implies that x; > i and x, < 0. Therefore, x, is the

stable characteristic root. Likewise, similarly to Gisser and Sanchez (1980), we obtained that
the transversality condition is only satisfied when MA = 0. By imposing the initial conditions

of the sub problem (H,(t;) = Hy), we obtain the constant MB as follows below.

_— i——NN
MB = 2 [H; — mm_je~xalr, (95)

mm uu

Therefore, the optimal solutions for W' (t) and H; (t) are given as follows below, respectively.
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MM _ NN

* mm_ - MM
Wy (t) = —= [Hy — B—]e¥2(t=tr) — —, (96)
XM _ Ny MMy
H(t) = [Hy — 2m—]e¥z(t=tr) 4 mm— (97)

Because x, < 0 and i > 0, the functional defined in (9) is verified to be a convergent integral.
Appendix 3. Proof of Proposition 1.

To determine the impact of the tax per unit of land sinking on optimal solutions, we

differentiate the optimal solutions with respect to £.

ow* i(1-a)nebPpASQ2x,

= x2(t—tT)
B foasicio, r2@-neg@i® - (98)

We observe that i(1 — a)nebpASQ?x, < 0 sincex, <0,i>0,(1—a)>0,7>0,>0
,b >0, >0,AS >0, and O2 > 0. We also observe that e*2(t=t1) > ( and e*2(t~1) < 1
always since x, < 0 and t > ty. Likewise, QASiC;G,(a — 1) < 0sinceQ > 0,AS >0,i >0,
C; <0, (@a—1)<0, and G; < 0. The term 2(a — 1)Gg(a — 1) > 0 since 2(a — 1)? > 0,
and Gg > 0. Therefore, the sign of the derivative depends on sign of the denominator, if

QASiC,G,(a — 1) > 2(a — 1)Gg(a — 1) the the derivative is negative. Thus, QASiC, G, (a —

. . , 2(a—1)Gq . , 2(a—1)Gg
D>2(a—1DGg(a—1)=>i> 0ASC.G, always since i >0 and 0ASC.Gy < 0. The case
QASiC,G,(ax — 1) < 2(a — 1)Gg(a — 1) can not occur since it will imply that i < %

1497

which is impossible since i > 0 and
QASC1 G,

< 0. In addition, the derivative of the optimal

water table height with respect to £ is given below.

0H* [ i(1—a)nebyQ
ap ~ laasic,G,+2(a-1)Ge]

](1 — e¥2(t=tr)y, (99)

We observe that i(1 — a)nebyQ > 0sincei >0,(1—a)>0,7>0,¢>0,b >0, >0,
and Q2 > 0. We also observe that e2(!=t7) > (0 and e*2(t=t1) < 1 always since x, < 0 and
t > tr, hence (1 — e*2(t=t1)) > 0, Likewise, QASiC;G, > Osince ) > 0,45 > 0,i > 0,C; <
0,and G; < 0.Theterm 2(a — 1)Gg < Osince 2(a — 1) < 0,and G¢ > 0. Therefore, the sign

of the derivative depends on sign of the denominator, if QASiC,G; > 2(a — 1)G¢ the the
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2007

2008

2009

2010
2011
2012
2013
2014
2015
2016
2017
2018

2019

2020

2021

2022
2023
2024
2025
2026
2027
2028
2029

2030

2031

2032

2033

2034
2035

2(a—1)Gg

derivative is positive. Thus, QASiC;G; > 2(a — 1)Gg = [ > always since i > 0 and

QASC, G,

% < 0. The case QASiC;G; < 2(a — 1)Gg can not occur since it will imply that i <
1Y7

2(0{-1)G6 2((1—1)66

which is impossible since i > 0 and < 0. Therefore, a higher Pigouvian tax

QASC1G QASC1G7

reduces the optimal level of groundwater extraction and raises the optimal water table level.

Appendix 4. Proof of Proposition 2.

To determine the impact of aquifer storage capacity reduction on optimal solutions, we
differentiate the expression for the economic cost ¢ (W, H) of losing the aquifer systems’
storage capacity with respect to the optimal water table level and extractions. This proof is

the same as that of Ndahangwapo et al. (2024).

W HY _ 1

ow* k (100)
The derivative is negative since k < 0.
dpW HY) _
—om =G (101)

The derivative is positive since C; < 0. Therefore, a higher Pigouvian tax reduces the optimal

level of groundwater extraction and raises the optimal water table level.
Appendix 5. Detailed solution of the third sub-problem on taxes

We can now solve for the third sub-problem since we have the solution (SP;) to the fourth

sub-problem. The hamiltonian function of the system (16), (17), (18) is given as follows

w2

H;3(t, W3, H3, A3) = _e_it[Zk

W-
- % - (CO + ClH3)W3 +

o[ Y

((A+nebyp)(HT—Hc))?
- (H3 4+ neby(Hs — H.) — Hy — neby(Hy — H.))* + y]
R+(a—1)Ws]

+ 2 IR (1 — a)Ws]] + A5 - |

AS AS (102)

Equation (102) can be rewritten as follows.
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2041

2042

2043
2044
2045

2046

2047
2048

2049

2050
2051

2052

2053

2054

2055
2056

2057

2058

2059

2060

2061

2062

w2

H3(t, W3, Hz, A3) = —e™[

2k
+0Y + Go[R — (1 — )W3]] + 4, - ]
Where
G, = anbw_
AS
_ 67
Gg - [HT_HC]Z.

Hence, the first order conditions are as follows

K. —it[W:
ﬁ: —e lt[f_%_ Co = CiH3 = G2 (1 — )] + 45

(a=1)
AS

OH;
0H3'

13 = -
A3 (tr, W3 (tr), H3(tr)) = Ay(tr, Wy (tr), Hy(tr))

. ASP; (tT, W, (tr),Hi(tT))
Hi(tr) ==+ ;tTT =

Hy = —[R + (@ — 1)Wj).

W-
— 2 = (Co + C1H3)Ws + Go(Hs — Hr)?

]=o0.

(103)

(104)

(105)

(106)

(107)

(108)

(109)

(110)

The transversality condition is given by lim;_,,,A;(t) = 0. From Equation (106), we obtain

the value for the costate variable A5 as follows.

1 i W-
Az = —e lt[f —%— Co — CGiH3; — G,(1 — a)],
wherem = %. The derivative of A5 with respect to t is given by

/‘1,3 == %e_lt[_%‘l' % + lCO + iClH3 + le(l - 0()

W
_E - ClmW3 + 73].

The derivative of H; with respect to the water table height H; is given by

dH3

- = _e_it[C]_W3 - 269H3 + ZGgHT].
OH;
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2079
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2082

2083

2084

2085

2086
2087
2088

2089

2090

From Equation (107) and (112), we obtain the following equation.

_61W3 + 269H3 - ZGgHT = %[_% + % + lCo + iClH3 + iGz(l - 0{)
C1R w.

Solving for W in the above equation we get the following equations.

W3 _ iW3 lg lCO iC1H3 iGz(l—a)

mk ~ mk mk m m m
C1R
+A;m + ZGQHS - ZGQHT (115)
W 7% i . . ,
73:173_%_160 _lC]_H3 _le(l —0()

Wy = iW; —ig — ikCy — ikC;Hy — ikG,(1 — )

CiRK
AS

4 CiRk
AS

Likewise, the value for H; can be rewritten as

= | R (119)
3 AS AS'

Consequently, we now have to solve the two simultaneous differential equations ((118) and

(119)). Thus, by letting m = (2;;), uuu = 2mkGy — ikC;, NNN = —ig — ikCy — ikG,(1 —
a) + % —2mkGyHr and M = %, we get the following system of differential equations.

W, = iW; + uuu - H; + NNN. (120)
Hy=m-W; + M. (121)
Putting the above system of differential equations in a D operator format (where D = %), and

solving for W5 yields the following second order linear non-homogeneous differential
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2092

2093

2094

2095

2096

2097

2098

2099

2100

2101
2102

2103

2104

2105

2106

2107
2108
2109
2110
2111
2112
2113

2114

2115

2116

equation.
[(D? — Di) — uuu - m]W; = uuu - M. (122)

The particular solution of the above differential equation is given by: —% and the

. i+ViZ+4uuu- .
characteristic roots by z; , = w Furthermore, the steady state level water table is
given by

" iM—NNN
Hz = [ ] (123)

uuu

Hence, the solution for W3 (t) and H3(t) are given as follows, respectively.

W; (t) = DAe‘* + DBe'* — =, (124)
\ m DA m DB i —-NNN
Hi(t) = 224tz 4 BB gtz | Im =0 (125)
Z1 Z3 uuu

Where DA and DB are obtained by imposing the initial conditions.

iM
—_— ——NNN
Zy _
B =2e 2ty —m
m

uuu

iM iM
[Hy W_NNN]—[HC W_NNN]ezz(fT—fc)

eZ1(tr—tc) _ez2(tT—tc)

iM iM

——NNN ——NNN
— gy [Hr=T ) [H- T ez (T )
A — 1[ uuu uuu

m eZ1tT _eZ1tctza(ty—tc)

-

(127)

Therefore, the functional defined in (16) is verified to be a convergent integral.

Appendix 6. Proof of Proposition 3.

To determine the impact of the tax per unit of land sinking on optimal solutions, we

differentiate the optimal solutions with respect to £.

ow* _ ik(1-a)neby (eZ2(tT—tc) _1)elZ1z,

B MAS[2mkGo—ikCy] elTz1—eZ1tc+z2(tr—tc)

2. e72(t=t) (eZ2(tr=tc) _1)eZ2(t=tc) g,
-7, —

(128)

ethl _efC21+22 (tr—t¢)

We observe that e?2(tT=t) — 1 < 0 since e?2(fr~t) € (0,1) becausez, < 0 and t; > t.. In

82



2117
2118

2119

2120

2121

2122

2123

2124

2125

2126
2127

2128

2129

2130

2131

2132
2133
2134

2135

2136

2137

2138

2139

2140

2141

2142
2143

addition, e?f > 1 since t > 0 and z; > 0. In addition, e%!T > 1. Therefore, (e?2(tr=tc) —

1)e%1tz; < 0, and e?1'r — eZ1tet2(tr=tc) > () because e?1iT > eZ1tetZ2(tr=t) mplies e?1 >

(eZ2(tT—tc) _1)elZ1z,
ethl —eZ1 tct+za(tr—tc)

e”2 always which is true since e?* > 0 and e?2 € (0,1). Therefore, <0.

Furthermore, z,e?2(t=t) < 0 since z, < 0, and e?2(t=t) € (0,1) because z, < 0 and t > t,.

(eZ2(tT—tc) _1)eZ2(t—tc) g,

In addition, the final term in the bracket is < 0.Theterms 2m2ASkGy <

eszl _etczl +za(tr—tc)

0, mASikC, <0, and mAS[2mkGy — ikC;] < 0 since 2m?kGy,AS > mASikC, implies

Z'ZG" > i where i € (0,1) and Gy > 0 implies 27269 > 0. The whole derivative is negative
1 1
because

(eZ2(tr—tc) _1)elZ1z, (eZ2(tr—tc) _1)eZ2(t—tc) g,

> z,e?2(t=t) 4

(129)

ethl —eZ1 tct+za(tr—tc)

The Left Hand Side (LHS) is less than zero and the Right Hand Side (RHS) is also less than zero,

ethl _etczl +z3(tr—tc)

but the RHS is more negative than the other because

Zzezz(t_tc) (eZZ(tT_tC)_1)e22(t_tc)zz

e?1tz, olr71 (130)
We now differentiate the optimal water table level with respect to £.
OH* _ ik(1-a)neby (eZ2(tT—tc) _1)elZ1z,
B  mAS[2mkGo—ikC,] = ‘elTZ1—eZitctz2(tr—tc)
2o (t—t (eZ2(tr=tc) _1)eZ2(t=tc) g, 1
—z,e%2(t=tc) _ R e i ;]. (131)

We observe that e?2(tT=t) — 1 < 0 since e?2(fr~tc) € (0,1) becausez, < 0 and t > t.. In
addition, e?f > 1 since t > 0 and z; > 0. In addition, e%!T > 1. Therefore, (e?2(tr=tc) —

1)e%1tz; < 0, and e?1r — eZ1tct2(tr=tc) > () because e?1!T > eZ1tetZ2(tr=t) mplies e >

(eZ2(tT=tc) _1)elZ1z,

< 0.the

z ichi ; z z
e?2 always which is true since et > 0 and e?2 € (0,1). Therefore, TR =)

term i < 0 since m < 0. Furthermore, z,e?2(=t) < 0 since z, < 0, and e?(t~t) € (0,1)

(eZ2(tT—tc) _1)eZ2(t—tc) g,

because z, < 0and t > t.. In addition, the final term in the bracket is 771 oteri 22t —t0)

0. The terms 2m2ASkG, <0, mASikC; <0, and mAS[2mkGy — ikC;] <0 since

2m2kGyAS > mASikCy implies 22 > i where i € (0,1) and Gy > 0 implies Z>=* > 0. The
1 1
whole derivative is negative because
(e%2(tT—tc) _1)etZ17, S ZzeZZ(t_tC) + (eZ2(tT=tc) _1)eZ2(t=tc)z, n 1 (132)

ethl—ezltC"'ZZ(tT_tC) ethl—etCZ1+22(tT_tC) m

The Left Hand Side (LHS) is less than zero and the Right Hand Side (RHS) is also less than zero,

but the RHS is more negative than the other because
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2144

2145
2146
2147
2148
2149
2150
2151

2152

2153

2154
2155

2156

2157
2158
2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169
2170
2171

zpeZ2(t=tc) (eZ2(tT—tc) _1)eZ2(t—tc) g, N 1

(133)

e21t21 eszl m'
Therefore, a higher Pigouvian tax reduces the optimal level of groundwater extraction and

raises the optimal water table level.
Appendix 7. Proof of Proposition 4.

To determine the impact of the tax per unit of land sinking on ecosystem health, we

differentiate the functional GDEsHS with respect to 3.

OGDESHS(H") _ . 2 p—Y  ik(l-a)neby
ap = 2(H" — Hr)(1 + neby) (d¢)2 mAS[2mkGo—ikCyq]
(eZ2(tT—tc) _1)elZ1z,

(eZ2(tr—tc) _1)eZ2(t=tc) g, 1 ]
ethl—etCzl+ZZ(tT_tC) m *

—_ ZzeZZ(t_tC) —_ (134)

ethl_ezltC+zz(tT—tc)
We observe that H* — H; > 0 since H* > Hy. If H* = Hp, the ecosystem health has reached

the critical thtreshold beyond which it change sto the critical unhealthy phase. In addition,

(1 4+ neby)? > 0 and (’;_;/2 > 0since p > y. We further observe that e?2((7=t) — 1 < 0 since

e?2(tr=tc) € (0,1) becausez, < 0 and t; > t.. In addition, e”2f > 1 since t > 0 and z; > 0.
In addition, e%1tT > 1. Therefore, (e%2(T~td) — 1)e%1tz, < 0, and e T — eZ1tctz2(tr=te) > ()

because e#1iT > eZ1tctz2(tr=tc) jmplies e > e?z always which is true since e?* > 0 and e?2 €

(eZ2(tT—tc) _1)etZ1z,

0,1). Therefore, < 0. the term l< 0 since m < 0. Furthermore,
m

ethl—ezltC"'ZZ(tT_tC)
z,e72(t=t) < Osince z, < 0, and e?2(t=tc) € (0,1) because z, < 0 andt > t,. In addition, the

(eZ2(tr—tc) _1)eZ2(t-tc) g,

< 0.Theterms 2m?ASkG, < 0, mASikC; <

final term in the bracket is 171 ot t 22—t

Go . )
2> i whereic€
1

0, and mAS[2mkGy — ikC;] < 0 since 2m?kGy,AS > mASikC, implies

2m
C

(0,1) and Gg > 0 implies ZYZ—GQ > 0. The whole derivative is negative because
1

(eZ2(tr—tc) _1)elZ1z, (eZ2(tr—tc) _1)eZ2(t-tc) g, 1

> z,e%2(t7t) 4

(135)

ethl—ezltC"'ZZ(tT_tC) ethl—etCZ1+22(tT_tC) m

The Left Hand Side (LHS) is less than zero and the Right Hand Side (RHS) is also less than zero,

but the RHS is more negative than the other because

z5eZ2(t=tc) (eZ2(tT—tc) _1)eZ2(t—tc) g, 1

+— (136)

e21t21 eszl m

Therefore, the higher the Pigouvian tax the higher the optimal level of the GDEs’ health.
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Appendix 8. Detailed solution of the second sub-problem on taxes

We can now solve for the second sub-problem since we have the solution (SP3) to the third

sub-problem. The hamiltonian function of the system (25), (26), (27) is given as follows

_ —it(Ws _ gW,
H,(t, Wy, Hy, A,) = —e [g - (Co + CH)W, + 0]
[R+(a-1)W3]

- (Hy — H)? + p]] + 2,

Equation (137) can be rewritten as follows.

. 2
H,(t, Wy, Hy, Ay) = _e_lt[‘g—i
p]
PRRLETCENTA
AS
Where

Gio =

Hence, the first order conditions are as follows

dH,

oW, kK

12:_

AS

0(5-p)
[Hu_Hc]zl

. W -1
—_— = —e lt[_z_g_ CO - C]_Hz] +AZ[(aAS )] = 0.

M,
0H,'

Az (te, W7 (L), Ha (t0)) = Az(te, W3 (to), H3 (to))

dSP3(tc,Ws (to).Hz(tc))
at,

H;(t) =

)

. 1
H, =—
27 as

[R + (a— 1D)W,].

(137)

W,
— 42— (Co+ CLH)W, + Gio(Hy — Ho)? +

(138)

(139)

(140)

(141)

(142)

(143)

(144)

The transversality condition is given by lim;_,,,4,(t) = 0. From Equation (140), we obtain

the value for the costate variable 4, as follows.
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2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211
2212

2213

2214
2215

2216

2217
2218

2219

2220

2221

2222

2223

2224

2225
2226
2227

1 WZ g

/12 = ;e_it[ X - CO - Cle], (145)
wherem = %. The derivative of A, with respect to t is given by
A, = %e“t[ Wy + I 4iCy+iC,H, — CI:—R — CymW, + = ]. (146)

The derivative of H’, with respect to the water table height H; is given by

—2 = —e Y[, W, — 2G,oH, + 2G,oH,]. (147)
From Equation (141) and (146), we obtain the following equation.
[_

lWZ

_61W2 + ZGlon - ZGloHC S + + lCO + lClHZ

1
m

Solving for W, in the above equation we get the following equations.

W, _iw, ig iCo iCiH, . CiR
m_;c:lm_;_%_l?o_lsz-l_ ——+ 2G1oH, — 2GyoH, (149)
& = % - g - lCO lClHZ + + ZmGloHZ ZmGloHC (150)

W, = iW, — ig — ikCo — ikCy H, + 25

+ kaGlon - kaGloH (151)

WZ == lWZ + [kaGlo - lkCl]Hz + [_lg lkCO Cle

Likewise, the value for H, can be rewritten as

(a-1)W2 | R

Hy =222 4 (153)

Consequently, we now have to solve the two simultaneous differential equations ((152) and

(153)). Thus, by letting m = @, ddd = 2mkGy, — ikCy, PPP = —ig — ikCo + ¢ —
2mkG,,H, and M = —, we get the following system of differential equations.
W, = iW, + ddd - H, + PPP. (154)
Hy=m-W, + M. (155)
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2229
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2231

2232

2233

2234

2235

2236

2237

2238

2239

2240
2241

2242

2243

2244

2245

2246
2247
2248
2249
2250
2251
2252

2253

Putting the above system of differential equations in a D operator format (where D = %), and

solving for W, yields the following second order linear non-homogeneous differential
equation.

[(D? — Di) — ddd - m]W, = ddd - M. (156)

The particular solution of the above differential equation is given by: —% and the

. i+ViZ+4-ddd-
characteristic roots by q; , = #. Furthermore, the steady state level water table
is given by
Hi = i 157
;== (157)

Hence, the solution for W, (t) and H;(t) are given as follows, respectively.

W; (t) = EAetd: + EBet® — =, (158)
m-EA tq m-EB atdz l——PPP
H;(t) = o et + —— p + - IR (159)
Where EA and EB are obtained by imposing the initial conditions.
EB =% _QZtu[H ___PPP
ddd
iﬂ—PPP M_ppp
[He————]—[Hy—" - Jed2(tc—tw)
- ed1(tc—tu) —eq2(tc—tu) ] (160)
iM iM
-1 _ a1 [Hc md_;d 1-[Hy m‘;:;P]eQZ(tc—tu)
EA = T crmeenuraateew (161)

Therefore, the functional defined in (25) is verified to be a convergent integral.

Appendix 9. Detailed solution of the first sub-problem on taxes

We can now solve for the first sub-problem since we have the solution (SP,) to the second

sub-problem. The hamiltonian function of the system (34), (35), (36) is given as follows

wi
2k

6-1)

Hy(t, Wy, Hy, Ay) = —e7H] (S1—Hy)?

w-
T = (Co+ CLH)OW, + 6]
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2268

2269
2270

2271

2272

2273

2274
2275

2276

2277

2278

2279

2280
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[R+(a—-1)W1]

. —_ 2 .
S —H) +1]]+ 4 s

(162)

Equation (162) can be rewritten as follows.

. 2
Hi(t, Wy, Hy, Ay) = _e_lt[zv_;c - gTW1 — (Co + CtH)OW; + G11(S; — Hy)? + 6]
+/11 ) [R+(a—1)Wq] (163)
AS
Where
_6(5-1)
G, = e (164)
Hence, the first order conditions are as follows
O _ir W (a—-1)
o =~ [ Co— G + L [F 7] = 0. (165)
. M
A =- 6H11' (166)
A1 (G, W (8), Hi (8)) = A5 (8w, W3 (), Hz (80)) (167)
}[ik (tu) — aSPZ (tulW{ZjEtu)lHZ(tu)), (168)
Hy = —[R + (a — DW;). (169)

The transversality condition is given by lim,_,,,4; (t) = 0. From Equation (165), we obtain the

value for the costate variable 4, as follows.

1 i W
Ay = —e =L =T —Cy — CyHy], (170)

wherem = %. The derivative of A; with respect to t is given by

A== ® =224+ D4 iCo+iCH, — 25— CmW, + 2. (171)

The derivative of H; with respect to the water table height H; is given by

9H;
9H,

= _e_it[Clwl + 26115[ - ZGllHl]' (172)
From Equation (166) and (171), we obtain the following equation.
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2287

2288
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2290

2291

2292
2293

2294

2295

2296

2297

2298

2299

2300
2301
2302

2303

2304
2305
2306

2307

2308

2309

lW1

—CiWy — 2G5, + 2G1,1H; = [_

- E - Clmwl K ]. (173)

1
m

Solving for W, in the above equation we get the following equations.

W W ' iCo, iCiH, . C4R

m_;:lm_;_%_l?o_llTl-l_ ——+2Gy,Hy — 26145, (174)

B iy — iCyHy + 22+ 2mGyy Hy — 2mGys S, (175)
cle

W1 == in - lg - lkCO - lkClHl + kaGllHl - kaG]_lSl (176)

W1 == in + [kaGll - ikCl]Hl + [_ig lkCO Cle

Likewise, the value for H, can be rewritten as

(a-DW; | R

Hy ="+ (178)

Consequently, we now have to solve the two simultaneous differential equations ((177) and

(178)). Thus, by lettingm = ( ) —ikCy, N = —ig — ikCy + Cll;k

2mkG,,S, and M = —, we get the following system of differential equations.
W, =iW, +u-H, +N. (179)
H =m-W, + M. (180)

Putting the above system of differential equations in a D operator format (where D = %), and

solving for W, vyields the following second order linear non-homogeneous differential
equation.

[(D? = Di) —u-m]W; =u- M. (181)
The particular solution of the above differential equation is given by: —% and the

. i+ViZ+4u- .
characteristic roots by y; , = % Furthermore, the steady state level water table is

given by
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2330

2331

2332

2333
2334

2335

Hy = ["—] (182)

Hence, the solution for Wy (t) and H{ (t) are given as follows, respectively.

Wy (t) = Aer + Be2 — =, (183)

— — .M
. . i—N
H;(t) = ’"y—A et 4 ’"y—f etz 4B, (184)

Where A and B are obtained by imposing the initial conditions.

M_
= _ Y2 T
B = - [Hy -
M_y M_y
Hy— —[H,—1 Vaty

eYitu—ey2tu

My My
— y; [Hy— T ] [Ho— T —e¥2fu
A - ;[ eYitu—eY2tu (186)
Therefore, the functional defined in (34) is verified to be a convergent integral.
Appendix 10. Detailed solution of the Quotas system resolution
The hamiltonian function of the system (41), (42), (43), and (44) is given as follows
_ir W2 gw (6-1)
HEW,H A) = —e [0 =77 = (Co+ CH)W + 0=
(S = H)? + 1]] + 2 EHEDY (187)
Equation (187) can be rewritten as follows.
—itW?  gw 2
[R+(a-1)w]
+1 — s (188)
Where
_6(5-1)
G, = S (189)
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Hence, the first order conditions are as follows

AN i W (a-1
B = et~ Ly~ H] + A = 0. (190)
. oH
i=-Z (191)
H=—[R+(a—1W]. (192)

The transversality condition is given by lim,_,,,A(t) = 0. From Equation (190), we obtain the

value for the costate variable A as follows.

1 i+ W
A=—e lt[;—%—CO—ClH], (193)

(

wherem = %51). The derivative of A with respect to t is given by

A=le -2 Y40, +icH
m k k
_GR _ w
S CymW + k]. (194)

The derivative of H with respect to the water table height H is given by

oH

- 9H _e_it [C]_W + 261151 - ZGllH]' (195)

From Equation (191) and (194), we obtain the following equation.

—CW = 26115 + 261, H = — [— =2+ 2+ iCo + i H
CiR w
—SE—cmw + 7. (196)

Solving for W in the above equation we get the following equations.

W iw ig iCo iClH_I_ CiR

mk mk mk m m ASm

+ ZGllH - 261151 (197)

174 iw i . , CiR
E = 17 — % — i€ — i€ H + =2+ 2mGyy H — 2mGy, S, (198)

CiRk

W =iW —ig—ikCy—ikC,H + S

+ kaGllH - kaGllsl (199)
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W = iW + [2mkGy, — ikC,]H + [—ig — ikCo + = — 2mkGy; S, (200)
Likewise, the value for H can be rewritten as
=9, R (201)
AS AS

Consequently, we now have to solve the two simultaneous differential equations ((200) and

(201)). Thus, by lettingm = (aA_Sl), u=-2mkGy; +ikCy, N = —ig — ikCy + C;’;k -

2mkGy,S;and M = /%, we get the following system of differential equations.
W=iW-u-H+N. (202)
H=m-W + M. (203)

) . . . d
Putting the above system of differential equations in a D operator format (where D = E)' and

solving for W yields the following second order linear non-homogeneous differential
equation.

[(D?=Di)+u-m]W = —u - M. (204)

The particular solution of the above differential equation is given by: — - and the solution to

the homogeneous differential equation ([(D? — Di) + u - m]W = 0) by
W(t) = Age'™ + Bye'™, (205)

i+Viz—4u

um « 4.
wherer; , = = 5 are the characteristic roots. The parameters A, and B, are constants

to be determined by imposing the initial conditions. Substituting the right hand side (RHS) of
(205) for W (t) in the homogenous DE (H = m - W) and integrating gives the solution for the

water table level H(t) as follows.

H(t) = ZAogtr 4 MBogtry. (206)

T T2
Furthermore, the steady state level water table is given by

H* = 2 (207)

u

Hence, the solution for W*(t) and H*(t) are given as follows, respectively.

W*(t) = Age'™s + Boe'’z — =, (208)
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.M
. . N-i—
H*(t) = Zfoetrs 4 mx_foetrz + % (209)

&1
Similarly to Gisser and Sanchez (1980) results, it is worth mentioning that —4um > 0 since
k<0,(,<0,i>0A4>0,5>0,5>0,H,>0,6>0,G;;<0,Hy)>0,08>0,anda <
1= (a—1)<0. This implies that r; >i and r, < 0. Therefore, r, is the stable
characteristic root. Likewise, similarly to Gisser and Sanchez (1980), we obtained that the
transversality condition is only satisfied when A, = 0. By imposing the initial conditions of
the sub problem (H(t,) = H,), we obtain the constant B, as follows below.

.M
N—-i—
m

By :Q[Ho_

m u

1. (210)

Therefore, the optimal solutions for W*(t) and H*(t) are given as follows below, respectively.

N—iM M
* _ r_Z _ mlartet 2
W*(0) = 2[Hy ——"]e" — (211)
N-iZ N-iZ
H*(t) = [Hy — —2]e™t + —2 (212)
u u
Let N be equal to Ny, then
. T,AS No—i% rot R
w(t) = ) [Hy — T]e - (213)
Where N, = —ig — ikCy + C;ik — 2mkG,,S;. Using equation (213), we determine the value

of N, that satisfies the condition W*(t) < W (¢t).

. R
12AS _ No—lo=5y rt R ~
22 [Hy — ——at]ent - < W (214)
T,AS No—i—— W(a-1)+R
[H _ .aR1]er2t < (215)
a—1 0 u - a—1
[H . No_iﬁ]eth < W(O!—l)‘l'R (216)
0 u = 1AS
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No—iz—7 _ W(a—-1)+R
0 a
< W)

_ a-—1 =71yt
[Hy - =) < Tt e, (217)
Hoﬁ—""(i‘—;;”e—rzf ST —— (218)
2 a—-1
Hoﬂ_ma_—me—rzt L <N, (219)
1 AS a—-1

If we let the Left Hand Side of (219) to be equal to N, (t), we then obtain

. R
TzAS _ NO_lE ot L
W*(t) = o Ho——5 1€ =7 No = Na(D) (220)
w Ny < N,(t)
O_iﬁ rot No_iﬁ
X [Ho — —=*e"" + —=*= No = N(t)
H*(t) = R R (221)
H. — Na®)-i = rt 4 Na®)—iz=7 N. < Na(t
[Ho —=]e — 0 (1)
i- |i2-au%t _
Where rn, = fAS, u= —2mkG11 + ikCl, Gll = [z(é‘—Hl])Z' NO = _lg - lkCo + C;I;k -
1—u
_ g _W@D+R __pp — iR
2mkGq1S;, and Ny (t) = Hyu s © Zut—.

The conditions to ensure that a maximum has been achieved have been verified.

Appendix 11. Proof of Proposition 5.

Take note that N, is just a composite constant and N, (t) is the switching index or decision
variable that decides whether the quota binds (N, < N,(t)) or not (Ny = N,(t)). The quota
binds (binding quota) when farmers want to extract more than the imposed quota level but
their unconstrained groundwater extraction optimum level is forced down to the quota level
(W), which occurs when the policy constraint is active (N, < N,(t)). A non-binding quota
refers to the case when farmers unconstrained groundwater extraction optimum level is
already less than or equal to W, which occurs when the policy constraint is inactive (N, >
N, (t)).Therefore, binding means the policy constraint is active while non-bing implies it is
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inactive. In addition, the comparison between N,(t) and N, tells us whether farmers are

constrained by the quota level at that point in time.

At the beginning of the planning horizon (t = 0), if N4(0) < N,, the quota level does not bind
initially (although it could bind later if the dynamics push the system across the threshold).
Hence, we solve for N, (0) = N,, this gives us the critical quota level (W) where the system
is exactly on the boundary between binding and non binding at t = 0. Thus, if you choose W
above (or below) ., then you start on the non-binding side (or on the binding side). The

guotas optimal solutions are as follows.

. R

TzAS _ NO_lE ot L
W*(t) =g Ho——5 1€ =7 No = Na(0) (222)

w Ny < N,(t)

O_iE§I Tt NO‘*E§I
ey — [Ho — —=*e"™" + —=*= No = N(t) (223)
© = Na(O—ite N
[Ho — 2 famterat 4 M0 ety < (1)

i- |i2-au%t B
—— u= —2mkGyq +ikCy, Gip = o) , No = —ig — ikCy + GaRk _

Where 1, = 5 [S1—Hy]? AS
2mkGq1S;, and Ny(t) = Hyu — %e‘m ‘u+ %. From the optimal solutions, we get
. _
thatatt =0,
_ = W@-1D+R_ iR
N4(0) = Hyu s ¥ +— (224)

Setting N4(0) = N, and solving for W, we obtain the following expression.

I Hou+-2—N i
W, =25 (——aei ) - & (225)

a—1 u a—1

The derivative of N, (t) with respect to t is given by the following expression.

ONA(t) _ U 5 — -1yt
40 — L (f(a~1) + R)e ™ (226)

The derivative above is positive since Ai_s >0, u > 0 because —2mkG,; + ikC; > 0=1>

2"é$since2";$<0andi>0(m<0, C; <0, k<0, G;; <0).Theterm (W(a—1) +

1 1

R)>Osince(VT/'(a—1)+R)>0:>%>a—lwhichistruebecause%>Oanda—l<

0. Finally, the term e™"2t > 1sincer, < 0 and t = 0. The above analysis implies that N, (t) is

strictly increasing. This implies that if N, (t) is strictly increasing, then for any later time t >
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0, Ny(t) = Ny(0), which means that the gap between Ny and N, (t) can only widen (or stay
the same if the derivative was zero). This gap can never shrink. Therefore, if N, starts at time

t = 0 below N4 (0), it must remain below N, (t) forall t > 0.

If the quota is binding, then W*(t) = W (N, < N,(t)). If the quota is not binding, then
W*(t) < W. Therefore, if the system changes from binding to non binding at t = 0 when
W = W,, any W < W, implies the quota is binding, and any W > W, implies the quota is non
binding attime t = 0. Thus, if the quota is low enough (W < W), then once N, < N,(0) hold,
it continues to hold forever. Thus, the system stays quota binding for the rest of the planning
period. If W > W,, we have that N, > N,(0) and N,(t) might grow bigger than N, at a later
time t > 0 since N4(t) is strictly increasing. This means that the quota can bind at a later time

t>0.

Appendix 12. Proof of Proposition 6.

Assume the quotais bindingatt = 0, thatis Ny < N,4(0). The derivative of N, (t) with respect

to @ is given by the following expression.

ONg(t) _  2Hemk(5-1) | W(a-1)+Re 2! mk(5-1)
9 (S;—Hy)? AS T2 (S;—Hy)?
x (2 + —2 U (227)

1 + 1 )
. a—1)_— . a—1)_—
2 12—4%'“. 21"2 12—4%11

The derivative above is positive. The parameter . > 0 because —2mkG;; + ikC; >0 =1 >
251 gince 2"2& <0andi>0(m<0, €; <0, k<0, Gy; <0). The first term above is
1 1

W(a-1)+R
AS

negative since m< 0, k<0, —-1<0, and Hy, > 0. We also observe that >0
since term (W(a —1)+R) > 0 since (W(a—1)+R)>0= % > a — 1 which is true
because% > 0and a — 1 < 0. Therefore, the factor outside the brackets of the second term

is negative since e 2t > 1 and r, < 0. The second term inside the brackets is greater than or

equal to zero sinceu > 0,t = 0, and fiz — 4%& = 0. The last term inside the brackets
is less than or equal to zero since u > 0, r, < 0, and fiz - 4%1‘1 = 0. For the overall

derivative to be positive, the following inequality should be true.

96



2498

2499
2500
2501

2502

2503
2504

2505

2506

2507

2508
2509

2510

2511
2512

2513

2514
2515

2516

2517

2518

2519
2520
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2Hymk(a—1) , W(a—1)+R e "2t mk(a-1) ut u

X (2 + + >0
(S1—Hy)? AS Ty (S;—Hy)? ZJi2_4(of4_51)ﬁ 2rz\/i2—4(0f4_51)ﬁ
(228)
u(W(a—1)+R)e T2t (W(a-1)+R)e""2t at
= > Hy — 2+ —) (229)
24572 /i2—4%ﬁ T2 2 /iz_4%ﬁ
— e Tt > Hrl( W(W(a—1)+R) 2W(@=D+R) | _GW(@—1)+R) ) (230)

24572 [i? —4l g AST2 2457, |i2 —4l g

The Left hand Side of the above inequality is negative if the following condition is true.

_ u(W(a—1)+R) 2(W(a—1)+R) Ut(W(a—1)+R)
Hy'(— + + )< 0 (231)
24512 /i2—4—("f4‘51)ﬁ ASTy 24575 /i2—4—("f4‘51)ﬁ
u ut
=t < _2- (232)
27, /i2—4—(0f4_51)ﬁ 2 /i2—4—(0f4_51)ﬁ
2 (a—1) — —
> u<—4nr, [i?—4 54— utn (233)
u
=1 > (234)

_ ’-2_ (a-1- =
4 |ic—4 A5 u—ut

Intuitively, , should be smaller in terms of magnitude compared to

. g ,(a-1)
i ,l 4—AS U
2

than large negative values for all t. If t = 0, the Right Hand Side reduces in terms of

u

_ /-2_ @1 -
4 [i4—4 s u—-ut

where i € (0,1) and smaller negative values are bigger

because it is equal to

magnitude. Hence the derivative is proved to be positive.
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This means that for every t, a larger 8 pushes N, (t) upward. Next, we explain how the quota
binding phase is lengthened. Recall that N, (t) is an increasing function of time (as we derived
in the proof of Proposition 5) and N, is fixed. Quota binding phase ends at time t* where the
equality Ny = N4 (t"). If O rises, the whole curve N,(t) shifts upward. That is, at t = 0, the
inequality Ny < N4(0) still holds, but now the gap is bigger. Since the curve is above N by a
bigger margin, it takes longer for N, (t) to be equal to N, if it ever does. Mathematically, the

solution t* to Ny = N,(t*) shifts to the right. Hence, our results is proved.
Appendix 13. Proof of Proposition 7.

When the quota is binding (N, < N,4(t)) for t > 0, the derivative of the water table level with

respect to the quota level is given by the following equation.

OH*(t) _ a-1 a
AW  1AS

—e ) <0, t>0, (235)

because e ™! > 1, (a —1) <0, r, <0, and AS > 0. This means that every marginal
increase in W lowers the water table by a predictable amount for t > 0. Economically, this
makes sense, if the quota level (W) is relaxed upward, farmers extract more, so the water
table (H*(t)) falls (negative derivative). This yields a closed form condition, that to keep
H*(t) = Hj, t>0, =123 (Flj represents the critical thresholds for the water table

height), it suffices to impose the following condition.

TzAS H*(t,Wo)—ﬁ*
1-a 1—e~ T2t

W =W, + mingeg o) Y =W, (236)
Where W, and H* represent the quota level at t = 0, and the the maximum of all critical
thresholds for the water table height, respectively. Thus, regulators can quantitatively
determine the maximum allowable quota consistent with keeping the water table height
above any ecological threshold, i.e., H,,, H., Hy. Take note that due to the complexity of the
minimisation expression in terms of our optimal solution for the water table height, we could

not solve for the explicit W, value. We just propose that maybe with numerical solvers, this

may be solved.
Appendix 14. Detailed solution of the Packaging and sequencing resolution

The optimal solution for the third sub-problem on taxes (SP3) is given by
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W*(t) = DAet” + DBet?s — = (237)

(a—1)DA (a—1)DB R NNN
" a— a— 1
H'(t) == —e™ +— o —e e m— (238)

i+ /i2+4-uuu-a—_1 _
where z;, = N8 g =B o= BTN = 2mkGy — ikC;, NNN =

2 $ 2T Tas 70T lHp-H?
. . . C1Rk
—ig — ikCy — ikG,(1 —a) + TR 2mkGgyHr, and
iR iR
i £__NNN £
—=  Z,AS B _NNN [Hp—%=1 1-[H—%=1 JeZ2(tT—tc)
DB = 22 e—ZZtC[H a1 — uuu uuu ] (239)
a-1 ¢ uuu eZ1(tr—tc) —eZ2(tT—1tc)
iR iR
£__NNN £
—  z4s [Hr—%= |-[H—%=L JeZ2(tT=tc)
DA =% [ uuu ¢ uuu (240)

a-1 eZ1tT _gZ1tct+z2(tT—tc)
If we let § = 0, it implies making G, = 0 in SP;. The resulting solution below gives us the
optimal solution for the severe unhealthy phase under a quota restriction. Take note that the
whole proof on SP; under taxes (Appendix 8) was analysed to ensure that letting G, = 0 in

SP; is mathematically correct.

W*(t) = DA2e'* + DB2e'2 — —, (241)

S S iR
(a—1)DA2 4, (a—1)DB2 4, a1 PP
—elt+—e2 +E=———

* —
H (t) - ASzq ASz, uuu (242)
i+ |i2+4uuuSr
=4 AS 0(p- , , ,
where z;,, = — Gy = ﬁ, uuu = 2mkGqy — ikC;, PP = —ig —ikCy +
C1Rk
2= — 2mkGyHy, and
AS
iR iR
iR =1 F a=1_FF -
DEF = 245 -2yt BoPP [Hp= T [H - Tl en2 Tt
DB2 = —=—e ZC[HC_ - z1(tr—tc) _azo(tp—t ] (243)
a—-1 uuu eZ1(tr—tc) _ez2(tT—tc)
iR iR
p =__pp
DT 2 M e L et
D T oa-1 [ eZ1tT _pZ1tc+z2(tT—tc) ] (244)

Using equation (244), we determine the value of DA2 that satisfies the condition W*(t) <
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§>

DA2et?1 + DB2etz2 — R < W (245)

a-1

“tZ1[W (a-1)+R]

DA2 <= — DB2et(z2=21), (246)

If we let the Right Hand Side of (246) to be equal to Nk (t), and taking into considerations

that extraction levels above W are subject to taxation, we then obtain

DA2et?1 + DB2et?2 _ﬁ DA2 < Ng(t)
W*(®) =\ DAets + DBes — L= AT > Ny(t) 247)

__ __ iR
—1)DA2 —1)DB2 ———PP —_—

(@ DDA2 gtay 4 CDDB2 gtz y st DAD < Ny (t)
ASzq ASz, uuu

H () = = - W (248)
@ UPA gtz 4 @ DB iz, et 7 DAZ > Ny(b)
ASzq ASz, uuu
i+ /i2+4-uuu-atA—_S1
— N AS __ Bneby _ B(p-v) . . .
Where z;, = 5 , Gy, = TR Gy = Tl uuu = 2mkGy — ikC;, NNN =
—ig — ikCo — ikGy(1 — @) + 2 — 2mkGoHy, PP = —ig — ikCy + == — 2mkGoHy,
—tZ1 [T (ry—
NK(t) — e 1[”;(_“1 1)+R] _ DBZet(ZZ_Zl), and
iR iR
iR ———NNN —
DR = 2245 - 21" NNN  [Hp—9= ]-[H—%=L JeZ2(tr—tc)
B = sz—l € ZZtC[HC — tiuu - uu:h(fT—fc)_eZzlé?;—fc) ] (249)
iR —NNN i—R—NNN
DA = 2,45 [Hr= = - Je2(T7t) 250
T oa-1 [ eZ1tT _gZ1tct+z2(tT—tc) ( )
iR iR
iR ——=—P PP
Ry _ Z2AS — PP [Hp—%——]-[H - ——]e?2(fT~tc)
DB2 = _az—1 e Ztc [Hc —a uluu _ u:gl(tr—fc)_ezzlg;‘_&) ] (251)
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iR iR

o p X __pp

-1 -1 —t
z,As [Hr—% |- [He~=t——]e2(tT~te)

DAz = a—1 [ u:ZL;fT—ezltﬁZz(fT—tc) (252)
Applying the same principle on SP,; (Appendix 2) that we used on SP;, we let G5 = G5 =
G, =G, =0,G;, =—1,and Gg = 1 to obtain the following optimal solutions for the critical
unhealthy phase under quota restrictions alone.
ASQ RN R
* _ a2 _a-1 Yoa,(t-ty) _ _K_
wW=(t) = [Hy = le®2ttTtT 7 (253)
iR iR
* — _ a1 My ap(t-t ) a1 M
H*(t) = [Hy = |e®2tt7iT) + = (254)
i— ,l +4u1— -
where, a, = 3, Gg = 9— ul = —ikC; + 2mkG6, and N; = —ig — ikCy +
2 [Hr-Hp]?’ Q
kCiR
st - zmkGﬁHB.

Using equation (254), we determine the value of N; that satisfies the condition W*(t) < W.

iR

2450 1y a1 M1 a,t-tr) _ R D
a-1 [ T ul ]e ’ ! a-1 =W (255)
1[W(a-1)+R] _ _ — iR
Ny < e e — Hrul + (256)

If we let the Right Hand Side of (256) to be equal to Nz (t), then we obtain

B2ASQ  ai Map(t-tr) _ R

W) = { g Hr =551 =22 Ny S Np(t) (257)

w N, > Ng(t)

Ry R

[Hy — %1] ap(t—tr) y a=1_1 N; < Ng(t)
H*(t) = _“_1 " " i (258)

[Hy — B eotn) L 552 N, > Ny (6)

i— ,l +4u1— -
where, a, = —2% <, Gg = G—V, ul = —ikC; + 2mkG6, N, = —ig — ikCy +
2 2 [Hr—Hp]? Q 9
kCyR

— 2mkGgHy, and Ny () = 2@ DR o—aye-tr) _ g 307 + al_:

QAS a,ASQ

Therefore, the final solution is given by
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2627
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2629

2630
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2632
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2634

2635

2636

2637

W () = 1

H*(t) = 5

— = R
(Ae + Bet? — —,
a

EAet% 4+ EBetdz — =
a-1

DA2et?1 + DB2et?2 — ﬁ
DAet?1 + DBet?z — L,

a-1
iR
a—l_Nl
ul

]eaZ(t_tT) —_ L

a-1’

azAS.Q _
- Hr

\W,

(259)

( - = i_R_N
weth + (@-1)B ety 4 a=1
ASy; ASYy, u '
_ _ iR
(a—1)EA ot 4 (a—1)EB otz 4 7—1 PPP
ASq, ASq, ddd
iR

)

ASzq ASz, uuu

J— — iR
a—1)DA a—1)DB 7—1 NNN
( et21 + ( etZz + a—1
ASzq ASz, uuu
iR iR
Ny

__N —_
[Hy — g]eaz(t—tr) 4e1
ul ul

R Np()

iR
——Np(t)

—a=1 " lyaap(t-tr) L a1 7
k[HT ul ]e + Pye )

(260)

J— JE— L
(a—1)DA2 atz1 4 (BB-1)DB2 atzz 4 a—1 PP

)

)

ift <t

ift, <t<t,

ift. <t <ty &DA2 < Ng(t),
ift, <t <tp&DA2 > Ni(t),

ift > tr & N; < Ng(t),
ift >ty & N; > Np(t).

ift <ty

ift, <t<t,

ift. <t <ty &DA2 < Ng(t),
ift, <t <tp&DA2 > Ni(t),
ift > t; & N; < Ny(t),

ift >ty & N; > Np(t).

it [i2+aust
—As,u = kaGll - ikCl, N = _ig - ikCO + GaRk - kaGnSl, Gll =

102

Wherey, , = . t
6(6-1)
sy, 2N°
% R o iR
— 3,45 =N [Hy—L—]-[Ho-%=L—jeY2tu
b= a-1 [HO - ; - eYitu—e¥2tu ]’ (261)
IR R _
—  y1As [[Hy—9=—]-[Hy—-9=—]eY2"u
T oa-1 [ eYitu—eYV2tu (262)
it |2 +4-aad- % _

Qo = =0 Gro = 2, ddd = 2mkGyo — ikCy, PPP = —ig — ikCo + 242
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2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651
2652

2653

2654

2655

2656

2657

2658

2659
2660
2661

2mkG,yH,, and

iM iM_

iM S -PP 5 PPP 0 tomtu)
E:ﬂe_‘htu[}[ _m PPP e g - Hu— g 1e™ e u] (263)
m u ddd ed1(tc—tu) —edz2(tc—tu) :
iM iM
= _ppp ™ _ppp
m L[, T a2 (te—tw)
EA=2% [[HC daq | "Hu—"ggg et (264)
m editc—ed1tu+qz(tc—tu)

it /iz+4-uuu-0{—_1 _
N8 =B g = e = 2mkGqy — ikC;, NNN = —ig —

Z = =
12 2 v T2 as ' 7% T [Hp-H?
. . C1Rk . . C1Rk
lkCO - lsz(l - (l) + 1145 - kaGgHT, PP = —lg — lkCO + 1145 - kaGgHT, NK(t) =
“Z1W(a-1)+R] 55 _
e [ (C{ ) ] _ DBzet(Zz Zl), and
a—-1
iR iR
_ R _ =1 NNN. =i Zo(tp—te)
B :ﬁe_ZZtC[H _ o NNy e e T C] (265)
a-—1 c uuu eZ1(tr—tc) _gz2(tT—tc) .
iR iR
~NNN —~—NNN
ﬂ—zl“ (Hr - He— Je2(Tt) 266
T a1 [ eZ1tT _gZ1tct+z2(tT—tc) ( )
iR iR
i ——P ————PP
=55  ZAS _ %—PF [Hp—%=L—]—[H %=1 ——]eZ2(tT~tc)
DB2 =22 @ Zth[H a1 — uuu uuu ] (267)
a-1 ¢ uuu eZ1(t7—tc) _oZ2(t7—tc) .
iR iR
P ———PP
DA7 = 248 (TS I (He S len2 o 268
T a1 [ eZ1tT _gZ1tctza(tT—tc) ( )
i- |2 +auiS L
QAS Oy — . 2mkGg . . kC1R
= < = = — = — — —_
a, . 0, Gg Trmm—— ul ikC, + L N, ig —ikCy + A

ul[W(a—1)+R]

2mkGeHp, and Np(t) = ———
2

e~ a2(t=tr) _ HTH + %. Therefore, the optimal

solutions are proved.
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Appendix 15. Proof of Proposition 8.

Take note that N is just a composite constant and N (t) is the decision variable that decides
whether the quota binds (N; > Ng(t)) or not (N; < Ng(t)). The quota binds (binding quota)
when farmers want to extract more than the imposed quota level but their unconstrained
groundwater extraction optimum level is forced down to the quota level (W), which occurs
when the policy constraint is active (N; > Ng(t)). A non-binding quota refers to the case
when farmers unconstrained groundwater extraction optimum level is already less than or
equal to W, which occurs when the policy constraint is inactive (N; < Ng(t)).Therefore,
binding means the policy constraint is active while non-bing implies it is inactive. In addition,
the comparison between N (t) and N, tells us whether farmers are constrained by the quota

level at that point in time.

At the beginning of the critically unhealthy phase (t = T), if N5 (T) = Nj, the quota level does
not bind initially (although it could bind later if the dynamics push the system across the
threshold). Hence, we solve for N3 (T) = Nj, this gives us the critical quota level (W) where
the system is exactly on the boundary between binding and non bindingatt = T. Thus, if you
choose W above (or below) W, then you start on the non-binding side (or on the binding
side). The optimal solutions for the critically unhealthy phase under packaging and sequencing

of taxes and quotas are as follows.

iR

ASQ 1 M _ R .

WH(e) ={ amy Hr =S 160 =0, ifE> 6 &Ny < Np(®), (p0)

w, ift >ty & N; > Ng(t).

i_R_N i—R—N

[Hy — %}eaz@—tﬂ + T ift >ty & N; < Np(t),
H*(t) = . . 270
) R Np®) o opy  AENB() 270

[HT—‘HT]eaz( 7) +e——, ift >ty & Ny > Ny ().

i- /i2+4ﬁo‘—‘1 —

Where, a, = fw <Ol GG = [HT?];IB]Z’ ul = —lkCl + 2m§G6, Nl = _lg - lkCo +

kCyR
QAS

ul[W(a—1)+R]
azASQ

— 2mkGgHg, and Ng(t) = e~ %(t-tr) — g 41 +£. From the optimal

solutions, we get thatatt =T,
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2716

Wla—vRyT + £ (271)
a,ASQ a-1

Ng(T) = —Hpul +
Setting N3 (T) = N; and solving for W, we obtain the following expression.

1y azASQ R

— iR
c — (a—l)ﬁ (Nl + HTul - E) - a—1 (272)

The derivative of Ny (t) with respect to t is given by the following expression.
M@ _ ML (@ — 1) + R)e~92(t=tr) (273)

at ASQ

The derivative above is positive since % > 0,ul > 0and ASQ > 0. The term (W (a — 1) +

R)>Osince(VT/'(a—1)+R)>0:>%>a—lwhichistruebecause%>Oanda—l<

0. Finally, the term e~®2(!=t7) > 1 since a, < 0 and (t — t;) = 0. The above analysis implies
that N (t) is strictly increasing. This implies that if Nz (t) is strictly increasing, then for any
later timet > T, Ng(t) = Nz (T), which means that the gap between N; and Nz (t) can only
lessen/reduce (or stay the same if the derivative was zero). This gap can never widen.
Therefore, if N; starts at time t = T above Ng(T), Ng(t) will surpass N; at some finite time
t > T, and the system will exit into the non-binding quota phase until the end of the planning

period.

If the quota is binding, then W*(t) = W (N; > Ny (t)). If the quota is not binding, then
W*(t) < W. Therefore, if the system changes from binding to non binding at t = T when
W = W,, any W < W, implies the quota is binding, and any W > W, implies the quota is non
binding at time t = T. Thus, if the quota is low enough (W < W,), then once N; > Ng(T)
hold, it only holds for a limited duration. Thus, the system transitions into the non-binding
quota phase until the end of the planning period. If W > W,, we have that N; < Nz(T) and
Nz (t) will continue growing higher than N; until t = oo because Ng(t) is strictly increasing.

This means that the quota stays non-binding until the end of the planning period.
Appendix 16. Proof of Proposition 9.

When the quota is binding (N; > Ny (t)) for t > T, the derivative of the water table level with

respect to the quota level is given by the following equation.

0H*(t) _ a-1

——=——(1— e~ 2ty <0, t >T, (274)
2
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because e~ %2(~t1) > 1 (@ — 1) < 0, a, < 0, and ASQ > 0. This means that every marginal
increase in W lowers the water table by a predictable amount for t > T. Economically, this
makes sense, if the quota level (W) is relaxed upward, farmers extract more, so the water
table (H*(t)) falls (negative derivative). This yields a closed form condition, that to keep
H*(t) > Hg (Hg represents the aquifer system bottom), it suffices to impose the following

condition.

a,ASQ H*(t,WT)—HB
1—-a 1—e_a2(t_tT)

W =Wr + minger m)f Y = W,. (275)

Where W, represents the quota level at t = t;. Thus, regulators can quantitatively determine
the maximum allowable quota consistent with keeping the water table height above the
aquifer bottom and prevent GDEs from disappearing. The GDEs collapse when H*(t) = Hj,
as assumed in the derivation of our GDEs health status functional. Likewise, take note that
due to the complexity of the minimisation expression in terms of our optimal solution for the
water table height, we could also not solve for the explicit Wk value. We just propose that

maybe with numerical solvers, this may be solved.

Appendix 17. Proof of Proposition 10.

Assume the quota is binding at t =T, that is N; > N (T). The derivative of Ny (t) with

respect to 0 is given by the following expression.

ON4(t) _ 2HTmky W(a—1)+R e~ 2E-tT)  mky
a6 - (HT—HB)Z ASQ ap (HT—HB)Z

ult ul )
’.2 (a—1)— o (a—D)—
2 i +4—ASQ ul 2a;, |i +4ASQ ul

The derivative above is positive. The parameter ul > 0 because

X (=2 —

(276)

2mkG6

2mG6
c1Q

2mG6

and i € (0,1), o
1

>0sincem<0, C; <0, k<0, Gg >0, y>0). The first term

W(a-1)+R

ASQ >0

above is positive sincem < 0,k <0,y > 0,and Hr > 0. We also observe that
since term (W(a —1)+R) > 0 since (W(a—1)+R)>0= % > a — 1 which is true
because% > 0and a — 1 < 0. Therefore, the factor outside the brackets of the second term

is positive since e"%2(t=t1) > 1 and a, < 0. The second term inside the brackets is negative

sinceul >0,t>T, and \/iz + 4%ﬁ = 0. The last term inside the brackets is positive
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sinceul >0,a, <0,and [i2+ 4@ﬁ = 0. For the overall derivative to be positive, the
2 ASQ

following inequality should be true.

ul ul
g _wat u >0 (277)
2/i2+4%%§§ﬁi 2a2/i2+4%£§$ﬂi
ul ult
- >24—— (278)
2a2/i2+4%%§¥ﬁi 2/i2+4%£§$ﬂi
ul
=a, < — (279)
4 Ji2+4 Dy
.. . . . ul
Intuitively, a, should be bigger in terms of magnitude compared to - because

2 (a—1)—> , —
4 ,l +4—ASQ ul+ult

where i € (0,1) and bigger negative values are smaller than small

) (a—1)—
i ,l +4—ASQ ul
2

negative values for all t. If t = T, the Right Hand Side reduces in terms of magnitude. Hence

it is equal to

the derivative is proved to be positive.

This means that for every t, a larger 8 pushes N (t) upward. Next, we explain how the quota
binding phase is shortened. Recall that Ny (t) is an increasing function of time (as we derived
in the proof of Proposition 8) and N; is fixed. Quota binding phase ends at time t* where the
equality N; = Ng(t*). If O rises, the whole curve Ng(t) shifts upward. That is, at t = T, the
inequality N; > Ng(T) still holds, but now the gap is smaller. Since the curve is below N; by
a smaller margin, it takes a short time for Ny(t) to be equal to N;. Mathematically, the

solution t* to N; = Ng(t™*) shifts to the left. Hence, our results is proved.

Appendix 18. Detailed solution when there is LS but no policy interventions

The hamiltonian function for phase four of the system (55), (56), (57) is given as follows
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wi

Ho(t, Wy, Hy, Ay) = _e_it[Zk

W,
- gT4 - (CO + ClH4)W4 +

o[ L

((1+nebyp)(HT—Hp))?

- (Hy + nebyp(H, — H,) — Hg — neby(Hp — H,))?]]
[R+(a—1)W,]

Ay Q-AS

(280)

Equation (280) can be rewritten as follows.

_ip W2 w,
Ha(t, Wy, Hyy 4) = —e 25 = 52— (Co + CLH) Wy + G (Hy — Hp)?]
R+ (a—1)Wy]
g (281)
Where
__ by
G = s (282)
Hence, the first order conditions are as follows
OHs _ _ —ittWa _ 9 _ ~ _ (a-1); _
W, e [k . Co— CiH,) + /14[0-,45] = 0. (283)
: AN,
Ay = — 6H: (284)
. 1
H, = Tas [R+ (a — DHW,]. (285)

The transversality condition is given by lim;_,,,4,(t) = 0. From Equation (283), we obtain

the value for the costate variable 4, as follows.

/14_ = Ee_it[% - % - CO - ClH4_], (286)

m k
wherem = %. The derivative of A, with respect to t is given by

Ay =Zeit[- 22 Y4 e 4icH, — 28 - an

_ Wy
m k k Q-AS Q W, + k]' (287)

The derivative of H, with respect to the water table height H, is given by

9H == —e_it[C1W4 + ZG6HB - 266H4_]. (288)
4

From Equation (288) and (287), we obtain the following equation.
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2819
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_61W4_ - ZGGHB + ZG6H4 = %[_% + % + lCO + iC1H4
_an _emy,
nas o Ve to) (289)

Solving for W, in the above equation we get the following equations.

Wy _ Qwy _ QCiiHy | oe o Qig QG
mk mk m 674 mk m

+ Asma. - ZGﬁHB (290)
%_%_ . 2mGegHy ig .

et CiiH, + 0 p iCy

CiR  2mGgH

+ -t (291)
W, = iW, — ikCyHy + 25255 — ig — ik +

H . o 2mkG6 o s kClR
W, = iW, + [—ikC; + " |H, + [—ig — ikCy + oAS

Likewise, the value for H, can be rewritten as
g, =W R (294)

Q-AS Q-AS’
Consequently, we now have to solve the two simultaneous differential equations ((293) and

(a-1) —

. 2mkGe = _ . . KCyR
ons ' 4= LkCl+—Q , N =—ig—ikCy +

QAS

(294)). Thus, by letting mm =

2mkGzHg and MM = %, we get the following system of differential equations.

W4_ == iW4+a'H4+N. (295)
H,=mm- W, + MM. (296)
Putting the above system of differential equations in a D operator format (where D = %), and

solving for W, yields the following second order linear non-homogeneous differential

equation.
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[(D? — Di) —a-mm]W, =a- MM. (297)

The particular solution of the above differential equation is given by: —% and the solution
to the homogeneous differential equation ([(D? — Di) — a - mm]W, = 0) by

W5(t) = KAet" + KBe'?, (298)

i+ViZ+4a-mm
2

where v, , = are the characteristic roots. The parameters KA and KB are

constants to be determined by imposing the initial conditions. Substituting the right hand side

(RHS) of (298) for W,(t) in the homogenous DE (H, = mm - W,) and integrating gives the

solution for the water table level H,(t) as follows.

H4(t) — M etvl + M e“’z_ (299)

&1 V2

Furthermore, the steady state level water table is given by

i N
H; = [%] (300)
Hence, the solution for W, (t) and H,(t) are given as follows, respectively.
W, (t) = KAet" + KBetv2 — 22 (301)
mm
Hy(t) =——e""t + ——e'V2 + B, (302)
V1 VU2 a

Similarly to Gisser and Sanchez (1980) results, it is worth mentioning that +4uumm > 0 since
k<0,(;<0,i>0A4>05>0,0>0,H; >0,H>0,¢>0,6>0,y>0,n>0,¢>
0, b>0, G¢>0, a<1=(a—1)<0or (1—a)>0, and m < 0. Furthermore, we

ikCi(a—1) 2mkGeg(a—1)

Q2AS

QAS

observe that — > 0 and < 0. It can also be proved that — >

ikCi(a—1) , 2mkGg(a—1)
QAS Q2AS

2miGe(a—1) Hence, +4a-mm = 4[—

YV ] > 0. This implies that v; > i

and v, < 0. Therefore, v, is the stable characteristic root. Likewise, similarly to Gisser and

Sanchez (1980), we obtained that the transversality condition is only satisfied when KA = 0.

By imposing the initial conditions of the sub problem (H,(t;) = Hy), we obtain the constant

KB as follows below.

.MM —

KB = 2 [H, — mm"jg-vatr, (303)
mm a

Therefore, the optimal solutions for W' (t) and H; (t) are given as follows below, respectively.
.MM —

Wy (£) = 22 [Hy — -mm"evate—tn) — MM, (304)
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21N iM_N
Hy(t) = [Hy — 22—] ev2(t=tr) 4 mm __ (305)

a

Because v, < 0and i > 0, the functional defined in phase four is verified to be a convergent
integral.
We can now solve for the third sub-problem since we have the solution (SP;) to the fourth

sub-problem. The hamiltonian function of phase 3 is given as follows

w2

Hs3(t, W3, H3, A3) = _e_it[Zk

W-
- % - (CO + ClH3)W3 +

o[ Y

((1+neby)(Hr—Hc))?

- (H3 + neby(Hs — H,) — Hy — neby(Hr — H,))?]]
[R+(a—1)Ws]

+/13 * AS

(306)

Equation (306) can be rewritten as follows.

i W2 w.
H3(t, Ws, Ha, A3) = —e ™[22 — 2 — (Co + C1H3)W; + Go(Hs — Hy)?
+y] + 2, - (307)
Where,
_ 6p-v)
Gy = r— (308)
Hence, the first order conditions are as follows
K. i W (a-1)
= e U2 =2 —Co = CiHs] + A3[] = 0. (309)
| — 0
Ay = " (310)
A3 (b, W3 (tr), H3(tr)) = Ay(tr, Wy (tr), Hy(tr)) (311)
Hi(ty) = aSPI(fT,WZ(fT)'HZ(tT))’ (312)

atr
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Hy = —[R + (a — 1)Wj). (313)
The transversality condition is given by lim;_,,,A5(t) = 0. From Equation (309), we obtain

the value for the costate variable A5 as follows.

1 W3 g

/13 = ;e_it[ Kk - CO - ClH3], (314)
wherem = %. The derivative of A5 with respect to t is given by
Ay = —eit[— = Wy + 9 +iCy+ iC,Hs
- E - ClmW3 Kk ]. (315)

The derivative of H; with respect to the water table height H; is given by

oM _

9H _e_it [C]_W3 - 269H3 + ZGgHT]. (316)
3

From Equation (310) and (315), we obtain the following equation.
[_

- E - ClmW3 Kk ]. (317)

lW3

_61W3 + 269H3 - ZGgHT = + + lCo + lClH3

1
m

Solving for W in the above equation we get the following equations.

Ws _iWs ig G iCiH3 +Cl—R+269H3—ZGgHT (318)
mk mk mk m m ASm
Yoo Ws 19 _ ¢, —iCyHs + Eb + 2mGyH; — 2mGoHy (319)

Wy = iW; —ig — ikCo — ikCH;  + 2

Likewise, the value for H; can be rewritten as

((l—l)W3 i

Hy =24~ (322)

Consequently, we now have to solve the two simultaneous differential equations ((321) and

(a-1)
AS

CiRk
AS

(322)). Thus, by lettingm = ,uuu = 2mkGqy — ikCy, NNN = —ig — ikC, +
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2mkGoHy and M = %, we get the following system of differential equations.

W, = iW; + uuu - H; + NNN1. (323)
Hy=m-W; + M. (324)
Putting the above system of differential equations in a D operator format (where D = %), and

solving for W5 yields the following second order linear non-homogeneous differential
equation.
[(D? — Di) — uuu - m]W; = uuu - M. (325)

The particular solution of the above differential equation is given by: - and the

. i+ViZ+4uuu- .
characteristic roots by z; , = w Furthermore, the steady state level water table is
given by

" iM—NNNl
H3 = [#——] (326)

uuu

Hence, the solution for W3 (t) and H3(t) are given as follows, respectively.

W; (t) = DAle'* + DBIet — =, (327)
m-DA1 m-DB1 iZ-NNN1
H3(t) = ——etZr 4 ——ptZ2 y m (328)
Z1 Zy uuu

Where DA1 and DB1 are obtained by imposing the initial conditions.

iM iM

i Z_NNN1 Z_NNN1
DR — %2 .- ~-NNN1 [Hr—1t 1-[Ho—1 JeZz(tT=tc)
B =—2e %2ic[H, — = - s G . (329)
m ¢ uuu eZ1(tT—tc) _gz2(tT—tc) .
iM iM
_NNN1 M_NNN1
— m - m z2(tT—tc)
DA = 2 (M g 1M 330)
m eZ1tT _gZ1tct+z2(tT—tc)

The proves for phase 2 and phase 1 can be found under the proofs of the tax policy (phases 1
and 2). Under the tax policy (phases 1 and 2), we have the same objective functions and
constraints as in the case of LS and No policy interventions (phases 1 and 2) because phases

1 and 2 are also not taxed under the tax policy.
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2935  Appendix 19. Main results of the sensitivity analysis of the critical thresholds

2936

2937 Table 2. Main results from the scenarios analysed under the LS-GDEs and no policy
2938 interventions scenario.

Scenario Water table | Aquifer Shifting year | Total
height depletion aggregate
(m.a.s.l) after 250 social welfare

years (Million us
(Mm3) dollars)

Baseline (Without GDEs | 1170.87 214 - 0.4032

and LS)

With GDEs’ dynamics | 1177.53 164.8 t, = 157.7 | 0.3415

(empirical critical t. = 1874

thresholds for the water tr = 190.1

table height and GDEs’

health phases):

H, = 1200.5,

H. = 1191.5,

H; = 1189.5;

6 =0.5,

p = 0.35,

y = 0.15.

Sensitivity 1  (lower | 1177.65 164 t, =148 | 0.3419

critical thresholds for the t. =188.3

GDEs’ health phases): tr =191.2

6 =04,

p =023,

y = 0.1.

Sensitivity 2 (higher | 1177.4 165.68 t, = 164.3 | 0.3414

critical thresholds for the t. = 187

GDEs’ health phases): tr =188
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2939
2940

6 =0.7,
p =04,
y =0.2.
Sensitivity 3 (lower | 1178.5 162.3 t, = 158.7 | 0.3482
critical thresholds for the t. = 183.6
water table height): tr = 2418
H, = 1195.5,
H. = 1190.5,
H; = 1184.5.
Sensitivity 4  (higher | 1180.98 150.64 t, =173 | 0.3349
critical thresholds for the t. = 189
water table height): tr =195
H, = 1205.5,
H. = 1196.5,
Hy = 1192.5.
Table 3. Main results from the scenarios analysed under the tax policy.
Scenario Water table | Aquifer Shifting year | Total
height depletion aggregate
(m.a.s.l) after 250 social welfare
years (Million us
(Mm3) dollars)
Baseline (Without GDEs | 1170.87 214 - 0.4032
and LS)
With GDEs” dynamics | 1179.1 158 t, = 163.8 | 0.3414
(empirical critical t. =197
thresholds for the water tr = 201.4
table height and GDEs’
health phases):
H, = 1200.5,
H. = 1191.5,
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2941
2942
2943
2944

H; = 1189.5;
6 =0.5,

p = 0.35,

y = 0.15.

Sensitivity 1  (lower
critical thresholds for the
GDEs’ health phases):

6 =04,

p =203,

y =0.1.

1179.04

159 t, = 156.8
t. =198
t; =201

0.3415

Sensitivity 2 (higher
critical thresholds for the
GDEs’ health phases):

6 =0.7,

p =04,

y =0.2.

1178

160 t, = 163
t. =196
t; =199

0.3413

Sensitivity 3 (lower
critical thresholds for the
water table height):

H, = 1195.5,

H. =1190.5,

Hy = 1184.5.

1179.2

160 t, = 168.8
t. =193.6
t; = 251.9

0.3477

Sensitivity 4 (higher
critical thresholds for the
water table height):

H, = 1205.5,

H. = 1196.5,

Hy = 1192.5.

1182.01

146 t, = 154
t. = 200
t; = 202.8

0.3347
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Scenario

Water table
height

(m.a.s.l)

Aquifer
depletion
after 250
years

(Mm?)

Shifting year

Total

aggregate
social welfare
(Million us

dollars)

Baseline (Without GDEs
and LS)

1170.87

214

0.4032

With GDEs’ dynamics

(empirical critical
thresholds for the water
table height and GDEs’
health phases):

H, = 1200.5,

H. = 1191.5,

H; = 1189.5;

6 =0.5,

p = 0.35,

y = 0.15.

1186.47

150.8

t, =126
t. =155
t; = 161

0.1395

Sensitivity 1  (lower
critical thresholds for the
GDEs’ health phases):

6 =04,

p =203,

y =0.1.

1186.47

150.7

t, =126
t. =144
tr =161

0.1395

Sensitivity 2 (higher
critical thresholds for the
GDEs’ health phases):

6 =0.7,

p =04,

y =0.2.

1186.47

150.7

t, =126
t. =145
t;r =163

0.1395

Sensitivity 3 (lower

1186.47

150.7

t, =132

0.1395
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2945
2946
2947
2948

H, = 1205.5,
H, = 1196.5,
Hy = 1192.5.

critical thresholds for the t, =151

water table height): tr =N/A

H, = 1195.5,

H. = 1190.5,

H; = 1184.5.

Sensitivity 4 (higher | 1186.5 150.7 t, =119 0.1395
critical thresholds for the t. =131

water table height): tr =136

Table 5. Main results from the scenarios analysed under packaging and sequencing of taxes

and quotas.
Scenario Water table | Aquifer Shifting year | Total
height depletion aggregate
(m.a.s.l) after 250 social welfare
years (Million us
(Mm?3) dollars)
Baseline (Without GDEs | 1170.87 214 - 0.4032
and LS)
With GDEs” dynamics | 1184.8 144.6 t, = 163.8 | 0.3414
(empirical critical t. =197
thresholds for the water tr = 2014

table height and GDEs’

health phases):

H, = 1200.5,
H, = 1191.5,
H, = 1189.5;
§=0.5,
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p = 0.35,
y = 0.15.
Sensitivity 1  (lower | 1184.8 144.6 t, = 156 | 0.3415
critical thresholds for the t. =198
GDEs’ health phases): tr =201
6 =04,
p =023,
y = 0.1.
Sensitivity 2 (higher | 1184.7 145 t, = 163.9 | 0.3413
critical thresholds for the t. =196
GDEs’ health phases): tr =199
6 =0.7,
p =04,
y = 0.2.
Sensitivity 3 (lower | 1182.53 160 t, = 168.8 | 0.3477
critical thresholds for the t. =194
water table height): tr =252
H, = 1195.5,
H. = 1190.5,
H; = 1184.5.
Sensitivity 4  (higher | 1187.8 132 t, = 154 0.3347
critical thresholds for the t. =200
water table height): tr = 202.8
H, = 1205.5,
H. = 1196.5,
Hy = 1192.5.
2949
2950
2951  Appendix 20. Monte Carlo simulations
2952

2953  We assume that the natural recharge rate (R) is roughly 7.5 Mm3, but we don’t know the

2954  exact constant R, it is uncertain. Although the analytic optimal control solution is derived
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under constant aquifer recharge R, annual rainfall in the Dendron area varies substantially
from year to year. Historical rainfall for the past 115 years is used to estimate the distribution
of annual rainfall P,. Effective recharge is assumed to be a fixed fraction ¢ of rainfall, such
that R, = ¢P,. Where ¢is an estimated recharge coefficient (area x fraction that percolates).
The empirical mean pg is equal to (less or more but close) the deterministic recharge value
used in the analytic solution (7.35 Mm?3/year), while the empirical variance provides the
dispersion for random draws. For each Monte Carlo run k, recharge is drawn as: R®) ~
f(ugr, 0%). Where f is the fitted distribution of rainfall values from the Dendron area. The
optimal control model is then solved using the closed-form analytic expressions for each
phase, with R replaced by the draw R®) . These yields switching times t&k),tgk),t;k)and
optimal paths H®) (t)and W ®)(t) for that simulation. Repeating this process 300 times yields
distributions for switching times, water-table trajectories, and extraction paths. This approach
preserves the analytic solution structure and Pontryagin optimality while incorporating

realistic rainfall variability.

We used gridded daily rainfall data (from 1900 to 2015, 115 years) for the Dendron area,
extracted using the area’s geographical coordinates. These datasets were then converted
into annual rainfall datasets. The gridded daily rainfall data was obtained from the Royal
Netherlands Meteorological Institute (KNMI) Climate Explorer, and freely available online
(https://climexp.knmi.nl/start.cgi). The KNMI Climate Explorer CPC (Climate Prediction
Center) database provides gridded daily rainfall data, including long-term means of both
monthly and daily precipitation. These data are produced by the NOAA Climate Prediction
Center’s global unified gauge-based analysis of daily precipitation, which spans the period
1900-2015. The dataset integrates historical and recent land-surface precipitation
observations from multiple sources and merges them into global precipitation estimates using
advanced data assimilation and forecasting models. The CPC Global Daily Unified Gauge-
Based Analysis of Precipitation is provided at a spatial resolution of 0.5° latitude by 0.5°
longitude. From the rainfall datasets, we found the mean in excel to be equal to 415.5 mm,
close to the theoretical average annual rainfall of amount 407 mm as documented for the
Hout river catchment in which the Dendron area is situated. We also fitted several

distributions and found that the data best fit the Gamma distribution.
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Figure 1. QQ plot for the Gamma distribution generated from the rainfall data.

Figure 2 shows the fitted Gamma distribution of the rainfall datasets. The scale and shape
parameters are equal to a = 13.9093 [10.7858, 17.9374] and b = 29.8693 [23.0546, 38.6985],
respectively. The mean, variance, and standard deviation is equal to 415.4613, 12409.5447,

and 111.3981, respectively.

100 200 300 400 500 600 700 800 900

121



2998
2999
3000
3001
3002
3003
3004

3005

3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016

3017
3018

3019
3020

Figure 2. Fitted Gamma distribution of the rainfall data.

We then move onto estimating the annual natural recharge rate using the relation R, = ¢P;,
where ¢ is an estimated recharge coefficient. Since we don’t have historical recharge values
to run a regression equation, we make use of the relation we stated already. That is, the Mean
annual rainfall (MAR) is proportional to Mean annual recharge (MAR,) through a constant ¢:

MAR, = ¢ - MAR. Since we know both means (from long-term rainfall data and long-term

) MAR 7.35 147
groundwater budget studies), we can solve for the constant ¢p: p = —2 = —"—= = —,
MAR 407 8140

will also make use of this value for ¢ when running Montecarlo simulation since random
recharge rates will be obtained from random rainfall rates that are picked randomly from the
Gamma distribution in a Montecarlo simulation. We also went further to make use of the
value for ¢ and convert the rainfall data into the recharge rates data to test if this value
approximates correctly the natural recharge rates in the aquifer. We obtained a mean of
7.502803 mm in excel, very close to the theoretical annual mean of 7.35 mm. We then carried
out the best distribution that fits the data. We again found that the Gamma distribution fits
the data best. The scale and shape parameters are equal to a = 13.9093 [10.7858, 17.9374]
and b = 0.539409 [0.416342, 0.698854], respectively. The mean, variance, and standard
deviation is equal to 7.5028, 4.0471, and 2.0117, respectively. The QQ plot is shown in Figure

3 below.
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Figure 3. QQ plot for the Gamma distribution using the estimated recharge rates data.
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