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Optimal groundwater management to mitigate water 
table decline and land subsidence impacts on 

groundwater-dependent ecosystems
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SUMMARY: 
Rising surface water scarcity has intensified groundwater extraction, which 

drives land subsidence (LS) and, in turn, damages groundwater-dependent ecosystems 
(GDEs). However, the LS-GDEs relationship remains largely underexplored in the 
economic literature. In this paper, we develop a dynamic economic optimization 
model that explicitly incorporates LS within a GDEs (LS-GDEs) framework and 
evaluate alternative policy instruments aimed at curbing overexploitation to mitigate 
the negative effects of groundwater depletion. These instruments include quota 
systems, taxes on land sinking and on aquifer storage loss, as well as packaging and 
sequencing of taxes and quotas. Using data from a major aquifer in South Africa, we 
calibrate the model and assess the private and social welfare implications. Our results 
show that taxes on land sinking and aquifer storage loss significantly influence 
extraction behaviour and raise water table levels, thereby enhancing social welfare. 
Among the policies, quotas yield the lowest private net benefits to farmers (0.1395 
million USD), while the baseline scenario generates the highest. The LS–GDEs and 
no policy intervention scenario delivers the second-highest private net benefits. 
Packaging and sequencing of policy interventions provides private net benefits equal 
to those under the tax policy. Overall, these findings highlight the importance of 
designing policies that account for LS-driven impacts to safeguard GDEs’ health. 
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Abstract 8 

Rising surface water scarcity has intensified groundwater extracHon, which drives land 9 

subsidence (LS) and, in turn, damages groundwater-dependent ecosystems (GDEs). However, 10 

the LS-GDEs relaHonship remains largely underexplored in the economic literature. In this 11 

paper, we develop a dynamic economic opHmizaHon model that explicitly incorporates LS 12 

within a GDEs (LS-GDEs) framework and evaluate alternaHve policy instruments aimed at 13 

curbing overexploitaHon to miHgate the negaHve effects of groundwater depleHon. These 14 

instruments include quota systems, taxes on land sinking and on aquifer storage loss, as well 15 

as packaging and sequencing of taxes and quotas. Using data from a major aquifer in South 16 

Africa, we calibrate the model and assess the private and social welfare implicaHons. Our 17 

results show that taxes on land sinking and aquifer storage loss significantly influence 18 

extracHon behaviour and raise water table levels, thereby enhancing social welfare. Among 19 

the policies, quotas yield the lowest private net benefits to farmers (0.1395 million USD), 20 

while the baseline scenario generates the highest. The LS–GDEs and no policy intervenHon 21 

scenario delivers the second-highest private net benefits. Packaging and sequencing of policy 22 

intervenHons provides private net benefits equal to those under the tax policy. Overall, these 23 

findings highlight the importance of designing policies that account for LS-driven impacts to 24 

safeguard GDEs’ health. 25 
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1. Introduc#on 33 

Groundwater-dependent ecosystems (GDEs) are ecological systems that rely on groundwater 34 

for some or all of their water needs (Rohde et al., 2020). These include springs, wetlands, 35 

rivers and streams, lakes, riparian forests, caves, and lagoons (Klove et al., 2011a). The well-36 

being of human socieHes is intrinsically linked to the health of these ecosystems. For example, 37 

GDEs provide essenHal ecosystem services, including flood miHgaHon, water purificaHon, 38 

erosion control, groundwater recharge, and natural irrigaHon (Klove et al., 2011b). Eamus et 39 

al. (2006) categorize GDEs into three types: (1) fully groundwater-dependent ecosystems 40 

(e.g., karsts, aquifers, and cave ecosystems), (2) those dependent on the surface expression 41 

of groundwater (e.g., base-flow rivers, streams, wetlands, and springs), and (3) ecosystems 42 

reliant on subsurface groundwater within rooHng depths (e.g., woodlands and riparian 43 

forests). A large share of the global economic value of ecosystem services, esHmated at 125 44 

to145 trillion US dollars annually as of 2014, is derived from groundwater-related ecosystems 45 

(Costanza et al., 2014). In addiHon, the global mean values (internaHonal dollars/ha/year) of 46 

ecosystem services for water-related ecosystems were esHmated at 2,398 for coastal 47 

systems, 6,791 for mangroves, 612 for inland wetlands, and 364 for rivers and lakes, etc. 48 

(Brander et al., 2024). Yet, excessive groundwater extracHon has led to severe environmental 49 

and economic losses, with damages esHmated at 4.3 to 20.2 trillion US dollars per year 50 

(Costanza et al., 2014). One criHcal consequence of excessive groundwater abstracHon is the 51 

lowering of the water table, which threatens GDEs (Eamus et al., 2006). When the water table 52 

declines beyond the reach of plant roots, terrestrial ecosystems lose access to groundwater, 53 

leading to habitat degradaHon (Rohde et al., 2020).  54 

 55 

Groundwater depleHon also reduces streamflow in rivers and springs, negaHvely affecHng 56 

aquaHc biodiversity and water availability (Rohde et al., 2020). Beyond the negaHve effects 57 

on ecosystem services, conHnuous groundwater overextracHon leads to land subsidence (LS).  58 

LS refers to the process where the ground surface sinks due to the compacHon of subsurface 59 

materials, ojen caused by the removal of groundwater among others. In addiHon, LS 60 

progresses in two phases: (1) elasHc compacHon, which is reversible, and (2) inelasHc 61 

compacHon, which is irreversible (Esteban et al. 2024; Ndahangwapo et al., 2024). The 62 

transiHon to the inelasHc phase signifies permanent damage, reducing groundwater 63 

availability and degrading GDEs. LS reduces aquifer storage capacity, exacerbaHng 64 
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groundwater depleHon impacts and leading to ecosystem stress. Ecosystem stress arises not 65 

only from reduced water availability for consumpHon, but also from LS–related impacts such 66 

as deterioraHng water quality, altered hydraulic flows, and other associated impacts (Dinar et 67 

al., 2021). The magnitude and severity of the LS damages depend on a combinaHon of physical 68 

and environmental factors: (i) depth to the water table, (ii) groundwater pressure, (iii) 69 

groundwater flux, and (iv) groundwater quality (Clijon & Evans, 2001).1  70 

 71 

Economic research on groundwater regulaHon has largely focused on depth externaliHes 72 

while overlooking GDE health and LS (Gisser & Sanchez, 1980; Brill & Burness, 1994; Guilfoos 73 

et al., 2013; de Frutos Cachorro et al., 2014; Tomini, 2014; Allen & Gisser, 1984; Brown & 74 

Deacon, 1972). Studies on LS and aquifer storage loss (Dinar et al., 2020; Esteban et al., 2024; 75 

Ndahangwapo et al., 2024) have not accounted for GDEs. Meanwhile, studies on GDE 76 

damages from groundwater depleHon (Esteban & Albiac, 2011; Roumasset & Wada, 2013; 77 

Esteban & Dinar, 2016; Esteban et al., 2021) have not considered the impact of LS on GDE 78 

health. This disparity in the literature leads to underesHmates of the impact of 79 

overexploitaHon of groundwater and bias in the value of the suggested policy intervenHons. 80 

This paper bridges these gaps by analyzing the interdependence between LS, aquifer storage 81 

loss, and GDE health. We offer the first economic study that explicitly links land subsidence 82 

with GDE health and explores the extent to which changes in groundwater use may affect 83 

their dynamics.  84 

 85 

To quanHfy these relaHonships, we develop a GDE health status funcHon that links GDE health 86 

with both the level of water table height and land subsidence. Several papers have defined 87 

ecosystem health as a funcHon of the depth to the water table (Esteban et al., 2021; Esteban 88 

and Dinar, 2016; Eamus et al., 2006; Gutrich et al., 2016). AlternaHvely, GDEs’ health can be 89 

expressed as a funcHon of the water table height (Esteban et al., 2021). There are two disHnct 90 

effects in our analysis. First, groundwater extracHon affects aquifer reserve which affects in 91 

turn the state of the ecosystem health. When the aquifer is full, the ecosystem remains in its 92 

 
1 Groundwater pressure refers to the force per unit area exerted by water within a confined aquifer, o8en 
related to the height of the water column above a reference point. Groundwater flux refers to the rate at which 
groundwater flows through a unit area of porous medium, usually expressed as volume per ?me per area. 
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prisHne state, but once the water table drops to the aquifer bomom, the ecosystem collapses. 93 

ReducHon of the water table height beyond a certain threshold (denoted 𝐻!) triggers the 94 

deterioraHon of the health status of the GDEs. From 𝐻!, the state of the GDEs enters the 95 

unhealthy phase. Second, when the water table height surpasses another threshold, (denoted 96 

𝐻") this creates LS from elasHc compacHon alone (severe unhealthy phase). During the severe 97 

unhealthy phase, the ecosystem suffers loss of biodiversity, collapse of vegetaHon cover, 98 

permanent aquifer damage, and breakdown of groundwater–surface water linkages. To 99 

simplify the analysis, we assume that threshold 𝐻! is reached first, followed by a second 100 

threshold 𝐻", then, a third threshold 𝐻#  can be reached. The third threshold marks the 101 

beginning of irreversible land subsidence (inelasHc compacHon). This means, land subsidence 102 

is reached within the interval of the unhealthy state of the ecosystem health. The damage 103 

inflicted on the ecosystem health caused by land subsidence can therefore be seen as a 104 

cumulaHve effect. 105 

 106 

We model GDE health over four states: a healthy phase, an unhealthy phase, a severe 107 

unhealthy phase, and a criHcal unhealthy phase. We follow Scheffer and Carpenter (2003) and 108 

Crepin et al (2012) in disHnguishing between the healthy and unhealthy phases and the extent 109 

to which ecosystem changes are triggered by external condiHons. The healthy phase 110 

corresponds to the state where GDEs are fully funcHonal, and all ecological and hydrological 111 

processes are funcHoning in a stable, undisturbed, and ecologically ideal state, supporHng 112 

long-term sustainability without intervenHon. Ecological processes are the natural 113 

interacHons and funcHons that sustain ecosystems and the organisms within them. Phase 2, 114 

the unhealthy phase, reflects a state where some ecological processes are not efficient or 115 

disrupted. During the severe unhealthy phase, GDEs experience major or severe funcHonal 116 

impairment, with key or essenHal ecological processes significantly compromised. Phase 4, 117 

the criHcal unhealthy phase, represents a state in which essenHal ecological processes have 118 

largely ceased or criHcally impaired, indicaHng that the GDE is on the verge of complete 119 

failure. 120 

 121 

The ecosystem state in our study is represented by a funcHon (𝐺𝐷𝐸𝑠𝐻𝑆(𝐻, 𝐿𝑆(𝐻))) that links 122 

the health of the ecosystem (𝐺𝐷𝐸𝑠𝐻𝑆) with both the level of water in the aquifer (𝐻) and the 123 

level of cumulaHve land subsidence (𝐿𝑆(𝐻)). The funcHon represents how a decrease in the 124 
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water table level affects the funcHoning of depending aquaHc ecosystems. CumulaHve land 125 

subsidence represents the net amount of LS that has occurred since surpassing the criHcal 126 

threshold 𝐻"  up to and including the current Hme. The health of the GDEs decreases as the 127 

water table height decreases and cumulaHve LS increases. The GDEs’ health status (GDEsHS, 128 

ranging from 0 to 1) funcHonal represents the condiHon or level of health of the GDEs. A value 129 

equal to 1 implies that the health of the GDEs is in its prisHne state. A reducHon in the value 130 

of the health funcHon beyond a certain threshold (denoted 𝛿) triggers the deterioraHon of 131 

the health status of the GDEs. From 𝛿, the state of the GDEs enters the unhealthy phase. 132 

Second, when the value of the health funcHon falls below another threshold, (denoted 𝜌) the 133 

health status enters the severe unhealthy phase. The last health threshold, 𝛾, marks the 134 

beginning of the criHcal unhealthy phase. A higher level or status of ecosystem health 135 

provides a higher level or amount of ecosystem services compared to a lower level of 136 

ecosystem health. The stated ecosystem funcHon is described in Figure 1. 137 

 138 

Our model incorporates several policy intervenHon mechanisms, such as taxes and quotas 139 

that are widely used to correct groundwater overextracHon externaliHes (Brown & Deacon, 140 

1972; Ndahangwapo et al., 2024; Dinar et al., 2020). A Pigouvian tax charged per unit of land 141 

sinking at every Hme step or quotas to limit water extracHon are compared. The paper 142 

evaluates the effecHveness of these regulatory tools and their packaging and sequencing 143 

ability to miHgate LS-induced damages to GDEs. We compare three policy scenarios: (1) taxes, 144 

(2) quotas, seong extracHon limits to prevent excessive groundwater withdrawal and 145 

preserve GDEs health, and (3) combined approach, a hybrid of quotas and taxes, considering 146 

their opHmal sequencing for policy effecHveness. Such analysis provides insights into which 147 

policy mechanisms can best align private extracHon incenHves with social welfare objecHves. 148 

 149 

The remainder of the paper is structured as follows: SecHon 2 presents a review of the 150 

relevant literature. SecHon 3 introduces the dynamic opHmizaHon model for groundwater 151 

management, outlining the effects of LS and policy intervenHons. SecHon 4 details the 152 

empirical approach, while SecHon 5 discusses the study area and data. SecHon 6 discusses the 153 

results and policy implicaHons. SecHon 7 concludes with recommendaHons for sustainable 154 

groundwater management. 155 

 156 
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2. Literature review 157 

Various insHtuHonal arrangements and policy instruments, such as taxes and quotas, have 158 

been proposed to regulate groundwater use and enhance social welfare (Brah and Jones, 159 

1978; Tang, 1991). Some studies have focused on quanHfying LS to bemer understand its 160 

extent and address its associated negaHve externaliHes. This review synthesizes previous 161 

research on LS, the health of groundwater-dependent ecosystems (GDEs), and groundwater 162 

overextracHon, as well as their interconnecHons. 163 

 164 

SystemaHc reviews by Herrera-García et al. (2021) and Bagheri-Gavkosh et al. (2021) highlight 165 

the global scope of land subsidence. Herrera-García et al. idenHfied 200 cases of 166 

groundwater-related subsidence across 34 countries, while Bagheri-Gavkosh et al. 167 

documented 290 subsidence cases in 41 countries, with around 60% amributable to 168 

groundwater pumping and 41% linked specifically to agricultural extracHon. Herrera-García 169 

et al. esHmate that subsidence currently affects approximately 8% of the Earth’s land surface, 170 

with some of the hugely affected regions being the Yazd-Ardakan aquifer and the California’s 171 

Central Valley. Subsidence also threatens urban areas: their analysis suggests that 19% of the 172 

global populaHon and 12% of global GDP are at high or very high potenHal risk, although only 173 

1.6% of land is directly exposed. In response to these risks, the Indonesian government has 174 

announced plans to relocate the capital city to Borneo Island, more than 1,000 km inland 175 

(Cobourn, 2025). 176 

Dinar et al. (2021) and Josset et al. (2024) developed indexes to measure the impacts of land 177 

subsidence, offering standardized approaches to monitor and inform policy decisions. Josset 178 

et al. proposed a mulH-dimensional Land Subsidence GeospaHal Risk Index (LSGRI), linking 179 

subsidence severity with direct damages to infrastructure and indirect damages from 180 

increased flood risk. Hu et al. (2013) combined physical modelling with a simplified calculaHon 181 

of monetary damages from subsidence, providing an iniHal quanHtaHve assessment. Wade et 182 

al. (2018) examined the economic costs of LS caused by groundwater pumping by esHmaHng 183 

the marginal damages from pumping in Virginia’s southern Chesapeake Bay region. Shrestha 184 

et al. (2017) provided the first assessment of LS in Kathmandu Valley, Nepal, using a fully 185 

calibrated coupled surface-subsurface groundwater model. Their simulaHons showed that 186 

deep aquifer compacHon from excessive groundwater abstracHon drives LS. Managed aquifer 187 
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recharge has been applied as a miHgaHon measure, successfully limiHng subsidence in Las 188 

Vegas and Shanghai, although it proved less effecHve in Mexico City (Seidl et al., 2024). 189 

Dinar et al. (2020) examined the use of Pigouvian taxes to internalize the external costs of 190 

land subsidence and aquifer storage loss caused by groundwater extracHon. They showed 191 

that targeted taxaHon could prevent further compacHon and water scarcity while aligning 192 

private extracHon with socially opHmal outcomes. Esteban et al. (2024) and Ndahangwapo et 193 

al. (2024) further examined the use of Pigouvian taxes on LS and aquifer storage capacity loss, 194 

showing that such taxes can significantly influence groundwater withdrawals, maintain higher 195 

water table levels, and prevent water scarcity. Ndahangwapo et al. (2024) also evaluated 196 

quota systems and combined tax-quota approaches, finding that while taxes alone reduce 197 

extracHons, combining instruments through packaging and sequencing generates higher 198 

social benefits. 199 

Ecosystem-related damages from groundwater depleHon have been analysed in several 200 

studies. Roumasset and Wada (2013) demonstrated that payments for ecosystem services 201 

(PES) could incenHvize groundwater conservaHon. Esteban and Dinar (2016) incorporated an 202 

ecosystem health funcHon into groundwater models, showing that opHmal extracHon paths 203 

must reflect the economic value of ecosystem services. Esteban et al. (2021) extended this 204 

work by modelling regime shijs in GDEs, idenHfying Hpping points beyond which ecosystem 205 

degradaHon becomes irreversible. Rohde et al. (2019) highlighted the importance of seong 206 

groundwater thresholds to secure environmental water needs for GDEs. Addressing data gaps 207 

in linking groundwater condiHons to GDEs’ health, they used geophysics alongside biological 208 

indicators of groundwater-dependent vegetaHon to assess GDEs’ health. Their results showed 209 

that vegetaHon health indicators correlate strongly with subsurface hydrological condiHons, 210 

offering a transdisciplinary framework that integrates hydrological, geophysical, and 211 

ecological data to improve monitoring and groundwater management. Esteban and Albiac 212 

(2011) proposed Pigouvian taxes based on ecosystem damage per unit of groundwater 213 

depleHon, illustraHng the role of economic instruments in preserving ecosystem health. 214 

Brown and Deacon (1972) formulated a tax on groundwater pumping, showing that higher 215 

extracHon costs encourage conservaHon. Maddock and Haimes (1975) developed a quadraHc 216 

linear programming model combining taxes with quotas, with taxes applied to excess 217 

extracHon and rebates for low extracHon. Bredehoej and Young (1970) compared taxes and 218 
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quotas in a hypotheHcal basin, observing similar outcomes with only minor welfare 219 

improvements. Feinerman and Knapp (1983) reported that while users preferred quotas, the 220 

social welfare gains were limited. Weitzman (1974) highlighted that under uncertainty, 221 

neither taxes nor quotas alone achieve first-best outcomes. Choi and Feinerman (1995) 222 

applied these concepts to groundwater polluHon, and Brozovic et al. (2004) found that quotas 223 

could achieve higher reducHons under certain condiHons. Duke et al. (2020) compared six tax 224 

policies using a coupled hydrologic-economic model, finding that social efficiency and 225 

earnings varied despite similar reducHons in withdrawals. 226 

To overcome the limitaHons of single instruments, studies have examined combined 227 

approaches. Maddock and Haimes (1975) showed that taxing excess extracHon while 228 

subsidizing low extracHon effecHvely reduced costs and promoted conservaHon. Lenouvel et 229 

al. (2011) developed a target-based mechanism combining ambient taxes with individual 230 

quotas, which reduced withdrawals in experiments despite informaHonal limitaHons. Esteban 231 

and Dinar (2013) demonstrated in the Western La Mancha aquifer that sequencing tax and 232 

quota intervenHons can achieve more sustainable management than single policies, although 233 

determining opHmal tax rates remains challenging under heterogeneous condiHons. Costello 234 

and Karp (2004) found that dynamic taxes provide bemer regulatory informaHon, enhancing 235 

social welfare compared to quotas. 236 

Equity consideraHons are also crucial. Feinerman (1988) highlighted the need for stakeholder 237 

consensus to ensure fair adopHon of groundwater policies. Sorensen and Herbertsson (1998) 238 

compared Pigouvian and flat-rate taxes, finding the former more efficient but challenging to 239 

implement due to informaHon gaps. 240 

Overall, the literature indicates that while taxes and quotas are effecHve for groundwater 241 

management, combining instruments and adapHng policies over Hme generally yields 242 

superior social outcomes. Building on these insights, the present study examines both 243 

individual and combined policy instruments in miHgaHng groundwater externaliHes, with a 244 

parHcular focus on induced LS and its effects on GDE health. We develop a GDE health status 245 

funcHon linking ecosystem condiHon with land subsidence to inform taxes and quotas 246 

designed to preserve ecosystem integrity and ensure sustainable groundwater use. 247 

 248 
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3. The model 249 

We consider an aquifer system situated beneath a specific agricultural region, which is 250 

managed under the oversight of a regulatory authority. It is assumed, without loss of 251 

generality that all farmers in this region rely exclusively on groundwater extracHon via water 252 

pumps, as no alternaHve water sources are available for irrigaHon purposes. Drawing on the 253 

framework established by Gisser and Sanchez (1980), the demand for irrigaHon water is 254 

expressed by EquaHon (1) below. 255 

 256 

 𝑊(𝑡) = 𝑔 + 𝑘𝑃(𝑡), 𝑔 > 0, 𝑘 < 0. (1) 257 

The funcHon 𝑊(𝑡) represents the groundwater extracHon rate at Hme 𝑡, 𝑔 and 𝑘 are 258 

parameters of the demand funcHon, and 𝑃(𝑡) is the price of irrigaHon water. The inverse 259 

demand funcHon corresponding to EquaHon (1) is given by EquaHon (2) below.2  260 

 𝑃 = $
%
− &

%
. (2) 261 

As a standard in the literature, farmers’ total revenue from groundwater use for irrigaHon is 262 

given by EquaHon (3) below.  263 

 ∫$ 𝑃(𝑊)	𝑑𝑊 = $!

'%
− &$

%
. (3) 264 

The cost of groundwater extracHon is defined by the funcHon 𝑃= = 𝐶( + 𝐶)𝐻, where 𝐶( > 0 265 

represents fixed extracHon costs and 𝐶) < 0 denotes marginal extracHon costs. The depth to 266 

the water table is given by 𝑆* − 𝐻, with 𝑆*  indicaHng the surface elevaHon of the irrigated field 267 

and 𝐻 represenHng the water table height. Consequently, the private benefits derived from 268 

groundwater use are given by total revenue minus total extracHon costs. The dynamics of 269 

groundwater are described by 𝐻̇ = )
+,
[𝑅 − (1 − 𝛼)𝑊], 0 < 𝑡 < +∞. Where 𝐴 is the area of 270 

the aquifer system (𝑚'), 𝑆 is the storaHvity coefficient (dimensionless), 𝑅 is the natural 271 

recharge rate (𝑚-/𝑦𝑒𝑎𝑟), and 0 ≤ 𝛼 < 1 represents the percolaHon return flow coefficient 272 

(dimensionless). AddiHonally, the change in water table height due to pumping is expressed 273 

as (Koundouri, 2004) Δ𝐻 = )
+,
[𝑅 − (1 − 𝛼)𝑊].  274 

 275 

In this study, we model GDEs’ health as a funcHon of water table height coupled with a 276 

measure of LS extent, where a decline in water table height corresponds to a decline in GDEs’ 277 

 
2 Omi*ng the operator 𝑡 for simplicity (Ndahangwapo et al. (2024)). 
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health. A decrease in the water table height and a simultaneous increase in LS extent (when 278 

subsidence is occurring) jointly intensify stress on the aquifer system, thereby further reduce 279 

the health of the GDEs. We assume that the aquifer is at full capacity when the water table 280 

height equals the surface elevaHon, that is, 𝑆* = 𝐻 (Esteban et al., 2021). A full aquifer implies 281 

that the GDEs’ health is in its prisHne state. Building on the framework proposed by Esteban 282 

et al. (2021), we define the GDEs’ health over four disHnct phases, as defined in the 283 

IntroducHon secHon (healthy, unhealthy, severe unhealthy, and criHcal unhealthy). The figure 284 

below illustrates the GDEs’ health status (GDEsHS) given in EquaHon (4). 285 

 286 

 287 
Figure 1. GDEs health status evoluHon. 288 

 289 

We define three GDEs’ health criHcal thresholds (or Hpping points) that are governing the 290 

GDEs’ health across the four phases: 0 < 𝛾 < 𝜌 < 𝛿 < 1. The parameter 𝛿 marks the criHcal 291 

threshold beyond which ecosystem health switches into the unhealthy phase (𝜌 ≤ Health <292 

𝛿), driven solely by a falling water table. Beyond 𝜌, ecosystem health enters the severe 293 

unhealthy phase (𝛾 ≤ Health < 𝜌), where both water table decline and elasHc land 294 

subsidence contribute to the ecosystem health stress. When the health falls below 𝛾, the 295 

system enters the criHcal unhealthy phase (0 ≤ Health < 𝛾), driven by a falling water table, 296 

both elasHc and inelasHc LS, and aquifer storage capacity loss. We assume that the health of 297 

the GDEs reaches zero when the water table falls to the aquifer bomom (𝐻 = 𝐻.), regardless 298 

of the amount of LS experienced at that Hme. 299 
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 300 

In addiHon, we define three criHcal thresholds for the water table height: 𝐻# < 𝐻" < 𝐻!. The 301 

threshold 𝐻! marks the point beyond which the ecosystem health enters the unhealthy 302 

phase; that is, the healthy phase occurs when 𝐻 ≥ 𝐻!, and the unhealthy phase begins when 303 

𝐻 < 𝐻!. When the water table falls below 𝐻", elasHc compacHon begins, marking the start 304 

of the severe unhealthy phase. Thus, the unhealthy phase corresponds to 𝐻" ≤ 𝐻 < 𝐻!, and 305 

the severe unhealthy phase begins when 𝐻 < 𝐻". Similarly, the threshold 𝐻#  represents the 306 

point below which inelasHc compacHon begins. Therefore, the criHcal unhealthy phase begins 307 

when 𝐻 < 𝐻#, and conHnues unHl the aquifer bomom 𝐻. is reached. As a result, by modifying 308 

the evoluHon of the ecosystem health, dependent solely on the depth to water table, as 309 

suggested by Esteban et al. (2021), we define the GDEs’ health status, 𝐺𝐷𝐸𝑠𝐻𝑆(𝐻, 𝐿𝑆(𝐻)) as 310 

presented in EquaHon (4) below (construcHon outlined in Appendix 1). 311 

  312 

𝐺𝐷𝐸𝑠𝐻𝑆(𝐻, 𝐿𝑆(𝐻)) =

⎩
⎪⎪
⎨

⎪⎪
⎧

/0)
(,"02#)!

⋅ (𝑆* − 𝐻)' + 1 if	𝐻 ≥ 𝐻!,
/04

(2#02$)!
⋅ (𝐻 − 𝐻")' + 𝜌 if	𝐻" ≤ 𝐻 < 𝐻!,

405
(6$)!

⋅ (𝐻 − 𝐿𝑆(𝐻) − 𝐻# + 𝐿𝑆(𝐻#))' + 𝛾 if	𝐻# ≤ 𝐻 < 𝐻" ,
5

(6%)!
⋅ (𝐻 − 𝐿𝑆(𝐻) − 𝐻. + 𝐿𝑆(𝐻.))' if	𝐻 < 𝐻# .

 (4) 313 

where 𝑑" = 𝐻" − 𝐿𝑆(𝐻") − 𝐻# + 𝐿𝑆(𝐻#), 𝑑# = 𝐻# − 𝐿𝑆(𝐻#) − 𝐻. + 𝐿𝑆(𝐻.), 𝐿𝑆(𝐻") =314 

𝐿𝑆(𝐻(𝑡")), 𝐿𝑆(𝐻#) = 𝐿𝑆(𝐻(𝑡#)), and 𝐿𝑆(𝐻.) = 𝐿𝑆(𝐻(𝑡.)). The funcHon, 𝐿𝑆(𝐻) = −𝜂 ⋅ 𝜀 ⋅315 

𝑏 ⋅ 𝜓 ⋅ (𝐻 − 𝐻"), represents the cumulaHve LS (in 𝑚). The parameters 𝜂, 𝑏, 𝜓, and 𝜀 represent 316 

the density of water, the aquifer system’s thickness, the aquifer system compressibility, and 317 

the acceleraHon due to gravity, respecHvely. Following Esteban et al. (2021), we further 318 

assume that at each criHcal threshold for the water table, the GDEs health status funcHonal 319 

is conHnuous, taking the same value from both the lej and right sides of the funcHon. Phase 320 

one funcHon is a downward opening parabola, where the GDEs’ health status decreases from 321 

1 towards 𝛿 as 𝐻 reduces. Phase two funcHon is an upward opening parabola, where the 322 

GDEs’ health status decreases from 𝛿 towards 𝜌 as 𝐻 reduces. 323 

 324 

In phase 3, GDEs’ health stress is driven by a decreasing 𝐻 and reversible 𝐿𝑆(𝐻) ≥ 0 (see 325 

Appendix 1). The GDEs’ health status decreases from 𝜌 towards 𝛾 as 𝐻 reduces and 𝐿𝑆(𝐻) 326 

increases. In phase 4, GDEs’ health decreases from 𝛾 to 0 as 𝐻 reduces and 𝐿𝑆(𝐻) increases. 327 
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Geological differences and withdrawal pamerns explain variaHons in subsidence magnitude 328 

and spaHal pamern (Zhang et al., 2007; Ha et al., 2021). Therefore, we assume one uniform 329 

aquifer system with evenly spread wells and effects. Finally, 𝜃 is a scaling parameter that 330 

translates GDEs’ health into a monetary value of the ecosystem services. Thus, 𝜃 is defined as 331 

the maximum total economic value of ecosystem services when the GDEs are in a prisHne 332 

health state. The model applicaHon is expected to serve as a robust tool for decision-making, 333 

providing quanHtaHve insights into the interplay between groundwater use, LS, and 334 

ecosystem resilience, and helping idenHfy policy opHons that achieve sustainable 335 

groundwater management while minimizing welfare and ecological risks. 336 

 337 

4. Policy instruments  338 

As previously stated, we examine several policy instruments: quotas and taxes. These policy 339 

instruments are chosen because they target different aspects of groundwater management, 340 

with quotas directly limiHng the quanHty of water extracted, while taxes provide economic 341 

incenHves to reduce overuse. We also examine the performance of their joint implementaHon 342 

(packaging and sequencing) in affecHng groundwater use and the health of GDEs. TesHng 343 

mulHple policy instruments allows us to idenHfy which poicy instruments, individually or in 344 

combinaHon, are most effecHve in sustaining both water resources and dependent 345 

ecosystems. 346 

 347 

4.1 Implementa#on of taxes 348 

Taxes will serve as the first policy intervenHon to be considered. A Pigouvian tax is aplicable 349 

when damages can be measured. Hence, taxing each unit of LS is reasonable. Although an 350 

alternaHve would be to tax the deterioraHon of GDEs’ health directly, the monitoring cost of 351 

ecological health is likely much higher than the benefit of internalizing extracHon 352 

externaliHes. By contrast, LS can be monitored relaHvely cheaply through satellite-based 353 

remote sensing and observaHon wells. The funcHon 𝐿𝑆(𝑊) represents the rate at which the 354 

land is sinking (𝑚) due to pumping as suggested by Ndahangwapo et al. (2024): 𝐿𝑆(𝑊) =355 

−𝜂 ⋅ 𝜀 ⋅ 𝑏 ⋅ 𝜓 ⋅ Δ𝐻. Where 𝜂, 𝑏, 𝜓, and 𝜀 represent the density of water, the aquifer system’s 356 

thickness, the aquifer system compressibility, and the acceleraHon due to gravity, 357 

respecHvely. 358 

 359 
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Taxing Δ𝐻 (change in water table height due to pumping) instead would be less pracHcal 360 

because its accurate measurement across space and Hme is costly and requires dense 361 

monitoring networks. Consequently, phases one and two will not be taxed since LS does not 362 

occur during these stages. Only phases three and four, where LS occurs, will be subject to 363 

taxaHon. Following Ndahangwapo et al. (2024), the parameter 𝛽 represents the Pigouvian tax 364 

charged per meter of land sinking (in 𝑚). In addiHon, the regulator imposes a Pigouvian tax 365 

on each cubic meter of aquifer storage capacity lost, defined by 𝜙(𝑊,𝐻) = $
%
− &

%
− (𝐶( +366 

𝐶)𝐻) (in $/𝑚-). The volume of storage capacity lost due to inelasHc compacHon from 367 

groundwater pumping is calculated following Ndahangwapo et al. (2024).  368 

 𝑝 = −𝐴𝑆𝜓𝑏𝜋(1 − 𝑛 + 𝑛7)Δ𝐻. (5) 369 

where, 𝜓 denotes aquifer compressibility (𝑚𝑠'/𝑘𝑔), 𝜋 the unit weight of water (𝑁/𝑚-), 𝑛 370 

the aquifer porosity (dimensionless), and 𝑛7 the moisture content in the unsaturated zone 371 

(fracHon of total volume, dimensionless). Based on these formulaHons, farmers maximize 372 

private welfare subject to the tax policy, which leads to the following welfare maximizaHon 373 

problem.  374 

		max$,2,9$,9#,9%k
9#

(
𝑒0:9[

𝑊'

2𝑘 −
𝑔𝑊
𝑘 − (𝐶( + 𝐶)𝐻)𝑊 + 𝜃(

𝛿 − 1
(𝑆* − 𝐻!)'

⋅ (𝑆* − 𝐻)' + 1)]𝑑𝑡 375 

 	+ ∫9$9# 𝑒
0:9[$

!

'%
− &$

%
− (𝐶( + 𝐶)𝐻)𝑊 + 𝜃( /04

(2#02$)!
⋅ (𝐻 − 𝐻")' + 𝜌)]𝑑𝑡 376 

	+k
9%

9$
𝑒0:9[

𝑊'

2𝑘 −
𝑔𝑊
𝑘 − (𝐶( + 𝐶)𝐻)𝑊 + 𝜃(

𝜌 − 𝛾
(𝑑")'

⋅ (𝐻 − 𝐿𝑆(𝐻) − 𝐻# + 𝐿𝑆(𝐻#))' + 𝛾) 377 

 	−𝛽 ⋅ 𝐿𝑆(𝑊)]𝑑𝑡 378 

	+k
;

9%
𝑒0:9[

𝑊'

2𝑘 −
𝑔𝑊
𝑘 − (𝐶( + 𝐶)𝐻)𝑊 + 𝜃(

𝛾
(𝑑#)'

⋅ (𝐻 − 𝐿𝑆(𝐻) − 𝐻. + 𝐿𝑆(𝐻.))') 379 

 	−𝛽 ⋅ 𝐿𝑆(𝑊) − 𝜙(𝑊,𝐻) ⋅ 𝑝]𝑑𝑡, (6) 380 

subject to  381 

 𝐻̇ =

⎩
⎪
⎨

⎪
⎧

)
+,
[𝑅 − (1 − 𝛼)𝑊], if	𝑡 ≤ 𝑡!

)
+,
[𝑅 − (1 − 𝛼)𝑊], if	𝑡! < 𝑡 ≤ 𝑡"

)
+,
[𝑅 − (1 − 𝛼)𝑊], if	𝑡" < 𝑡 ≤ 𝑡#
)

<⋅+,
[𝑅 − (1 − 𝛼)𝑊], if	𝑡 > 𝑡# .

 (7) 382 

and  383 

 𝐻(𝑡) > 0, 𝐻(𝑡() = 𝐻(, 𝐻(𝑡") = 𝐻" , 𝐻(𝑡!) = 𝐻!, 𝐻(𝑡#) = 𝐻# . (8) 384 
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where 𝑖 denotes the discount rate. The parameter 0 < Ω ≤ 1 captures the impact of 385 

groundwater extracHon on the aquifer system’s storage capacity (Dinar et al., 2020). 386 

Following Ndahangwapo et al. (2024), we assume that the reducHon in aquifer storage 387 

capacity is constant and independent of the aquifer system’s volume. To solve the above 388 

mulH-stage opHmal control problem, the opHmizaHon is conceptually divided into four sub-389 

problems, as in Kim et al. (1989). However, in this study, we employ a backward inducHon 390 

approach. The fourth sub-problem (SP4) is presented below. 391 

 392 

	max$&,2&,9% k
;

9%
𝑒0:9[

𝑊>
'

2𝑘 −
𝑔𝑊>

𝑘 − (𝐶( + 𝐶)𝐻>)𝑊> 393 

	+𝜃( 5
(6%)!

⋅ (𝐻> − 𝐿𝑆(𝐻>) − 𝐻. + 𝐿𝑆(𝐻.))') − 𝛽 ⋅ 𝐿𝑆(𝑊>) − 𝜙(𝑊>, 𝐻>) ⋅ 𝑝]𝑑𝑡 (9) 394 

subject to  395 

 𝐻̇> =
)

<⋅+,
[𝑅 − (1 − 𝛼)𝑊>], (10) 396 

   397 

 𝐻>(𝑡#) = 𝐻# 		given, 𝑡# 		free. (11) 398 

The opHmal soluHons, 𝐻>∗(𝑡) and 𝑊>
∗(𝑡), during the criHcal unhealthy phase, assuming that 399 

the severe unhealthy phase switches to the criHcal unhealthy phase when Hme 𝑡#  is 400 

surpassed, are determined by the following expressions.  401 

 𝑊>
∗(𝑡) = @!+,<

A0)
[𝐻# −

'(
)*+0BB

!!
]e@!(909%) − C

A0)
, (12) 402 

   403 

 𝐻>∗(𝑡) = [𝐻# −
'(
)*+0BB

!!
]e@!(909%) +

'(
)*+0BB

!!
, (13) 404 

where, 𝑥' =
:0D:!E>!!)*+,-.

'
 <0, 𝐺' =

FGHIJ
+,

, 𝐺- = 𝑏𝜓𝜋(1 − 𝑛 + 𝑛7), 𝐺K =
CL/
%
+ ()0A)&L/

%
+405 

𝐺-(1 − 𝛼)𝐶( − 𝐺'(1 − 𝛼), 𝐺M =
N5

[2%020]!
, 𝐺Q = 𝐺-(1 − 𝛼) − 1, 𝐺R = 1 − 2𝐺-(1 − 𝛼), 𝑢𝑢 =406 

:%S+L1
L2

+ 'T%L3
<L2

, and 𝑁𝑁 = − :&
L2
− :%S4

L2
+ :%L5

L2
− %L1S+C

<+,L2
− T%L/CS+

<L2
− 'T%L320

L2
.  407 

 408 

The proof of sub-problem 4 can be found in Appendix 2. This paper is the first to explicitly link 409 

GDE health stress to the combined effects of LS and groundwater decline, establishing a dual-410 

stressor framework for GDE vulnerability. From a policy perspecHve, this provides decision-411 

makers with a new tool to internalize the ecological costs of unsustainable groundwater use. 412 
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While Ndahangwapo et al. (2024) examined taxes on LS and storage capacity loss, their 413 

framework did not incorporate GDE health. Similarly, Esteban and Albiac (2011) analyzed 414 

taxes targeHng ecosystem damages from falling water tables but excluded the role of LS. The 415 

opHmal soluHons derived in this framework support the design of integrated groundwater 416 

governance strategies that bemer align hydrological management with GDE protecHon, 417 

parHcularly in regions where LS poses an addiHonal threat to ecosystem viability. 418 

 419 

Two types of Pigouvian taxes examined. The first is 𝛽, a Pigouvian tax charged per unit of land 420 

sinking, which directly internalizes the economic costs associated with LS. The second is a tax 421 

on each cubic meter of aquifer storage capacity lost, denoted by 𝜙(𝑊,𝐻), which internalizes 422 

the storage capacity loss externality. Together, these taxes provide complementary 423 

approaches to incenHvize sustainable groundwater use and miHgate damages to GDEs. In 424 

addiHon, ProposiHons 1-4 examine the impact of taxes on both groundwater extracHon and 425 

GDEs’ health. These combinaHons are analysed to illustrate how different Pigouvian taxes 426 

target specific ecological and hydrological externaliHes at various stages of ecosystem 427 

degradaHon, and to show how regulatory intervenHons can align private extracHon decisions 428 

with social welfare objecHves. By linking tax instruments to both water table levels and GDE 429 

health outcomes, the proposiHons demonstrate the effecHveness of these policies in 430 

miHgaHng LS, preserving aquifer storage capacity, and maintaining ecosystem funcHon across 431 

different phases of ecosystem stress. 432 

 433 

Proposi#on 1. The Pigouvian tax per unit of land sinking (𝛽) directly influences groundwater 434 

management in the criFcal unhealthy phase. A higher Pigouvian tax reduces the opFmal level 435 

of groundwater extracFon and raises the opFmal water table level. 436 

 437 

The proof of ProposiHon 1 can be found in Appendix 3. In the criHcal unhealthy phase, 438 

irreversible ecological and hydrological damages emerge as external costs not borne by 439 

individual users. To correct this market failure, the regulator imposes a Pigouvian tax (𝛽) on 440 

LS per unit of extracHon. This raises the marginal cost of pumping, reduces opHmal 441 

groundwater use, and maintains a higher water table. By internalizing the rising marginal 442 

damage from LS, the tax aligns private extracHon decisions with social costs and helps prevent 443 

further ecological damages. 444 
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 445 

Proposi#on 2. The Pigouvian tax per unit of aquifer system storage capacity loss (𝜙(𝑊,𝐻)) 446 

directly influences groundwater management in the criFcal unhealthy phase. A higher 447 

Pigouvian tax reduces the opFmal level of groundwater extracFon and raises the opFmal 448 

water table level. 449 

 450 

The proof of ProposiHon 2 can be found in Appendix 4. In this phase, groundwater pumping 451 

damages GDEs and reduces aquifer storage capacity. A Pigouvian tax (𝜙(𝑊,𝐻)) internalizes 452 

the social cost of storage capacity loss, raising the marginal cost of extracHon. This incenHvizes 453 

users to pump less, maintaining a higher water table, slowing LS, and preserving aquifer 454 

capacity.  455 

 456 

Since the soluHon to sub-problem 4 is obtained, we solve for a soluHon to sub-problem 3 457 

(𝑆𝑃-). Following Raouf et al., (2003); Boucekkine et al., (2004); and Dinar et al., (2020), we 458 

impose the following matching condiHons for opHmality and conHnuity.  459 

 𝜆-∗ (𝑡# ,𝑊-
∗(𝑡#), 𝐻-∗(𝑡#)) = 𝜆>∗ (𝑡# ,𝑊>

∗(𝑡#), 𝐻>∗(𝑡#)) (14) 460 

 ℋ-
∗(𝑡#) =

U,V&∗(9%,$&∗(9%),2&∗(9%))
U9%

, (15) 461 

where 𝑆𝑃>∗(⋅) represents the opHmal soluHon to sub-problem 4. The variable ℋ> represents 462 

the hamiltonian for sub-problem 4. As a result, sub-problem 3 is given by  463 

 		max$/,2/,9$ ∫
9%
9$
𝑒0:9[$/

!

'%
− &$/

%
− (𝐶( + 𝐶)𝐻-)𝑊- 464 

	+𝜃( 405
(6$)!

⋅ (𝐻- − 𝐿𝑆(𝐻-) − 𝐻# + 𝐿𝑆(𝐻#))' + 𝛾) − 𝛽 ⋅ 𝐿𝑆(𝑊-)]𝑑𝑡 + 𝑆𝑃>∗(𝐻#∗ , 𝑡#), (16) 465 

subject to  466 

 𝐻̇- =
)
+,
[𝑅 − (1 − 𝛼)𝑊-], (17) 467 

   468 

 𝐻-(𝑡") = 𝐻" 		given;		𝐻-(𝑡#) = 𝐻>(𝑡#) = 𝐻#; 		𝑡# 		free;		𝑡" < 𝑡 ≤ 𝑡# . (18) 469 

The opHmal soluHons, 𝐻-∗(𝑡) and 𝑊-
∗(𝑡), during the severe unhealthy phase, assuming that 470 

the unhealthy phase switches to the severe unhealthy phase when Hme 𝑡"  is surpassed, are 471 

determined by the following expressions. 472 

 473 

 𝑊-
∗(𝑡) = 𝐷𝐴e9W+ + 𝐷𝐵e9W! − C

A0)
, (19) 474 
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   475 

 𝐻-∗(𝑡) =
(A0))X+
+,W+

e9W+ + (A0))X.
+,W!

e9W! +
'(
)*+0BBB

!!!
. (20) 476 

where 𝑧),' =
:±D:!E>⋅!!!⋅)*+-.

'
, 𝐺' =

FGHIJ
+,

, 𝐺Z =
N(405)
[2%02$]!

, 𝑢𝑢𝑢 = 2𝑚𝑘𝐺Z − 𝑖𝑘𝐶), 𝑁𝑁𝑁 =477 

−𝑖𝑔 − 𝑖𝑘𝐶( − 𝑖𝑘𝐺'(1 − 𝛼) +
S+C%
+,

− 2𝑚𝑘𝐺Z𝐻#, and 478 

 479 

 𝐷𝐵 = W!+,
A0)

e0W!9$[𝐻" −
'(
)*+0BBB

!!!
	−

[2%0
'(
)*+*777

### ]0[2$0
'(
)*+*777

### ][8!(:%*:$)

[8+(:%*:$)0[8!(:%*:$)
]. (21) 480 

   481 

 𝐷𝐴 = W++,
A0)

[
[2%0

'(
)*+*777

### ]0[2$0
'(
)*+*777

### ][8!(:%*:$)

[8+:%0[8+:$<8!(:%*:$)
]. (22) 482 

   483 

 484 

The proof of sub-problem 3 can be found in Appendix 5. For the first Hme, taxes on LS (𝛽) are 485 

applied during the severe unhealthy phase of GDEs, where stress arises from both LS and a 486 

declining water table. Unlike prior studies, this framework treats these co-occurring stressors 487 

jointly, targeHng a criHcal stage of ecosystem degradaHon. For policymakers, such taxes 488 

discourage harmful extracHon ajer criHcal thresholds are crossed, signaling that urgent 489 

miHgaHon and restoraHon acHons are needed in severely stressed aquifers. 490 

 491 

Proposi#on 3. The Pigouvian tax per unit of land sinking (𝛽) directly influences groundwater 492 

management in the severe unhealthy phase. A higher Pigouvian tax reduces the opFmal level 493 

of groundwater extracFon and raises the opFmal water table level. 494 

 495 

The proof of ProposiHon 3 can be found in Appendix 6. The Pigouvian tax (𝛽) on LS internalizes 496 

the external cost of subsidence, raising the marginal cost of extracHon and reducing 497 

groundwater pumping. This maintains a higher water table, preserves ecological funcHon, and 498 

slows further subsidence. Since subsidence is sHll reversible in this phase, the tax provides a 499 

cost-effecHve intervenHon that prevents escalaHon into the criHcal unhealthy phase. 500 

 501 

Proposi#on 4. The Pigouvian tax per unit of land sinking (𝛽) has a direct impact on the opFmal 502 
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GDEs’ health in the severe unhealthy phase. The higher the Pigouvian tax the higher the 503 

opFmal level of the GDEs’ health. 504 

 505 

The proof of ProposiHon 4 can be found in Appendix 7. Increasing the Pigouvian tax (𝛽) on LS 506 

raises the marginal cost of pumping, reducing extracHon, subsidence, and maintaining a 507 

higher water table. Because GDEs’ health depends on groundwater depth, this leads to 508 

improved ecological outcomes and higher opHmal GDE health. Thus, the tax acts as both a 509 

correcHve and proacHve tool, protecHng ecosystem services efficiently before irreversible 510 

thresholds are crossed. 511 

 512 

Since the soluHon to sub-problem 3 is obtained, we solve for a soluHon to sub-problem 2 513 

(𝑆𝑃'). Likewise, we impose the following matching condiHons for opHmality and conHnuity.  514 

 𝜆'∗ (𝑡" ,𝑊'
∗(𝑡"), 𝐻'∗(𝑡")) = 𝜆-∗ (𝑡" ,𝑊-

∗(𝑡"), 𝐻-∗(𝑡")) (23) 515 

 ℋ'
∗(𝑡") =

U,V/∗(9$,$/∗(9$),2/∗(9$))
U9$

, (24) 516 

where 𝑆𝑃-∗(⋅) represents the opHmal soluHon to sub-problem 3. The variable ℋ- represents 517 

the hamiltonian for sub-problem 3. As a result, sub-problem 2 is given by  518 

 		max$!,2!,9# ∫
9$
9#
𝑒0:9[$!

!

'%
− &$!

%
− (𝐶( + 𝐶)𝐻')𝑊' 519 

 	+𝜃( /04
(2#02$)!

⋅ (𝐻' − 𝐻")' + 𝜌)]𝑑𝑡 + 𝑆𝑃-∗(𝐻"∗, 𝑡"), (25) 520 

subject to  521 

 𝐻̇' =
)
+,
[𝑅 − (1 − 𝛼)𝑊'], (26) 522 

   523 

 𝐻'(𝑡!) = 𝐻!		given;		𝐻'(𝑡") = 𝐻-(𝑡") = 𝐻"; 		𝑡" 		free;		𝑡! < 𝑡 ≤ 𝑡" . (27) 524 

The opHmal soluHons, 𝐻'∗(𝑡) and 𝑊'
∗(𝑡), during the unhealthy phase, assuming that the 525 

healthy phase switches to the unhealthy phase when Hme 𝑡! is surpassed, are determined by 526 

the following expressions. 527 

 528 

 𝑊'
∗(𝑡) = 𝐸𝐴e9\+ + 𝐸𝐵e9\! − C

A0)
, (28) 529 

   530 

 𝐻'∗(𝑡) =
(A0))]+
+,\+

e9\+ + (A0))].
+,\!

e9\! +
'(
)*+0VVV

666
. (29) 531 
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  where 𝑞),' =
:±D:!E>⋅666⋅)*+-.

'
, 𝐺)( =

N(/04)
[2#02$]!

, 𝑑𝑑𝑑 = 2𝑚𝑘𝐺)( − 𝑖𝑘𝐶), 𝑃𝑃𝑃 = −𝑖𝑔 − 𝑖𝑘𝐶( +532 

S+C%
+,

− 2𝑚𝑘𝐺)(𝐻", and 533 

 534 

 𝐸𝐵 = \!
T
e0\!9#[𝐻! −

'=
>0VVV

666
		−

[2$0
'=
>*???
@@@ ]0[2#0

'=
>*???
@@@ ][A!(:$*:#)

[A+(:$*:#)0[A!(:$*:#)
]. (30) 535 

   536 

 𝐸𝐴 = \+
T
[
[2$0

'=
>*???
@@@ ]0[2#0

'=
>*???
@@@ ][A!(:$*:#)

[A+:$0[A+:#<A!(:$*:#)
]. (31) 537 

 538 

The proof of sub-problem 2 can be found in Appendix 8. These opHmal soluHons target the 539 

unhealthy phase of GDEs, where ecological damage is sHll highly reversible. This phase 540 

provides a narrow but criHcal window for intervenHon. The results guide policymakers to 541 

stabilize GDE health and slow progression toward severe degradaHon, offering Hmely, 542 

proacHve strategies to prevent ecological collapse, especially in regions near Hpping points. 543 

 544 

We obtained the soluHon to sub-problem 2, we can solve for the soluHon to sub-problem 1 545 

(𝑆𝑃)). Likewise, we impose the following matching condiHons for opHmality and conHnuity.  546 

 𝜆)∗(𝑡!,𝑊)
∗(𝑡!), 𝐻)∗(𝑡!)) = 𝜆'∗ (𝑡!,𝑊'

∗(𝑡!), 𝐻'∗(𝑡!)) (32) 547 

 ℋ)
∗(𝑡!) =

U,V!∗(9#,$!∗(9#),2!∗(9#))
U9#

, (33) 548 

where 𝑆𝑃'∗(⋅) represents the opHmal soluHon to sub-problem 2. The variable ℋ) represents 549 

the hamiltonian for sub-problem 1. As a result, sub-problem 1 is given by  550 

 		max$+,2+ ∫
9#
( 𝑒0:9[$+

!

'%
− &$+

%
− (𝐶( + 𝐶)𝐻))𝑊) 551 

 	+𝜃( /0)
(,"02#)!

⋅ (𝑆* − 𝐻))' + 1)]𝑑𝑡 + 𝑆𝑃'∗(𝐻!, 𝑡!), (34) 552 

subject to  553 

 𝐻̇) =
)
+,
[𝑅 − (1 − 𝛼)𝑊)], (35) 554 

   555 

 𝐻)(𝑡() = 𝐻(		given;		𝐻)(𝑡!) = 𝐻'(𝑡!) = 𝐻!; 		𝑡!		free, 0 ≤ 𝑡 ≤ 𝑡!. (36) 556 

The opHmal soluHons, 𝐻)∗(𝑡) and 𝑊)
∗(𝑡), during the healthy phase, are determined by the 557 

following expressions. 558 
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 559 

 𝑊)
∗(𝑡) = 𝐴e9^+ + 𝐵e9^! − C

A0)
, (37) 560 

   561 

 𝐻)∗(𝑡) =
(A0))+
+,^+

e9^+ + (A0)).
+,^!

e9^! +
'(
)*+0B

!
. (38) 562 

Where 𝑦),' =
:±D:!E>!)*+-.

'
, 𝑢 = 2𝑚𝑘𝐺)) − 𝑖𝑘𝐶), 𝑁 = −𝑖𝑔 − 𝑖𝑘𝐶( +

S+C%
+,

− 2𝑚𝑘𝐺))𝑆*, 𝐺)) =563 

N(/0))
[,"02#]!

, and 564 

 565 

 𝐵 = ^!+,
A0)

[𝐻( −
'(
)*+0B

!
−

[2#0
'(
)*+*7

# ]0[240
'(
)*+*7

# ][B!:#

[B+:#0[B!:#
], (39) 566 

   567 

 𝐴 = ^++,
A0)

[
[2#0

'(
)*+*7

# ]0[240
'(
)*+*7

# ][B!:#

[B+:#0[B!:#
]. (40) 568 

  569 

The proof of sub-problem 1 can be found in Appendix 9. These results are crucial because few 570 

aquifers remain in the healthy phase, while most have already experienced irreversible LS and 571 

entered degraded states. For policymakers, this provides a rare opportunity to act proacHvely, 572 

maintaining the aquifer within safe ecological limits. The opHmal soluHons offer a prevenHve 573 

blueprint, enabling regions sHll in this phase to avoid delayed responses and stay ahead of 574 

ecological degradaHon. The quota system is analysed in the next subsecHon. 575 

 576 

4.2 Implementa#on of the quotas system 577 

An effecHve quota system limits groundwater extracHons to remain within the aquifer’s 578 

sustainable yield or ecological thresholds. To analyze its impact on GDE health and 579 

groundwater use, we introduce the constraint 𝑊(𝑡) ≤ 𝑊{ , with 𝜙(𝑊,𝐻) = 0, Ω = 1, and 580 

𝛽 = 0, where 𝑊{  is the quota level. The goal is to determine opHmal extracHon and water 581 

table levels that slow or prevent cumulaHve drawdown, internalizing externaliHes and 582 

aligning individual water use with aquifer and GDEs’ health sustainability. If properly designed 583 

and enforced, the quota keeps the system in the healthy phase, prevenHng transiHon to 584 

unhealthy or criHcal phases. A quota is effecHve only if monitored, enforced, and based on 585 

ecological thresholds and realisHc recharge rates. Farmers’ welfare maximizaHon is then 586 
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solved subject to this quota policy.  587 

 		max$,2 ∫
;
( 𝑒0:9[$

!

'%
− &$

%
− (𝐶( + 𝐶)𝐻)𝑊 + 𝜃( /0)

(,"02#)!
⋅ (𝑆* − 𝐻)' + 1)]𝑑𝑡 (41) 588 

subject to  589 

 𝐻̇ = )
+,
[𝑅 − (1 − 𝛼)𝑊], (42) 590 

   591 

 𝑊(𝑡) ≤ 𝑊{ , (43) 592 

and  593 

 𝐻(𝑡) > 0; 	𝐻(𝑡() = 𝐻(	and	𝐻(𝑡!) = 𝐻!	given. (44) 594 

The opHmal soluHons, 𝐻∗(𝑡) and 𝑊∗(𝑡), under quota restricHons to preserve the ecosystem 595 

health, are determined by the following expressions. 596 

 597 

 𝑊⋆(𝑡) = }
!̀+,
A0)

[𝐻( −
B40:

(
)*+

!
]e !̀9 − C

A0)
				𝑁( ≥ 𝑁+(𝑡)

𝑊{ 				𝑁( < 𝑁+(𝑡)
 (45) 598 

   599 

 𝐻⋆(𝑡) = ~
[𝐻( −

B40:
(

)*+
!

]e !̀9 +
B40:

(
)*+

!
				𝑁( ≥ 𝑁+(𝑡)

[𝐻( −
B-(9)0:

(
)*+

!
]e !̀9 +

B-(9)0:
(

)*+
!

				𝑁( < 𝑁+(𝑡).
 (46) 600 

 where 𝑟' =
:0D:!0>!)*+-.

'
, 𝑢 = −2𝑚𝑘𝐺)) + 𝑖𝑘𝐶), 𝐺)) =

N(/0))
[,"02#]!

, 𝑁( = −𝑖𝑔 − 𝑖𝑘𝐶( +
S+C%
+,

−601 

2𝑚𝑘𝐺))𝑆*, and 𝑁+(𝑡) = 𝐻(𝑢 −
$a (A0))EC

!̀+,
e0 !̀9 ⋅ 𝑢 + :C

A0)
.  602 

 603 

The proof of the quotas resoluHon can be found in Appendix 10. The opHmal soluHons 604 

illustrate the evoluHon of water table levels and extracHons when quotas are applied early, 605 

during the healthy phase, and maintained through the planning period. By protecHng GDEs 606 

from the outset, quotas can delay the system from entering unhealthy or irreversible states, 607 

ensuring sustainable groundwater use and preserving ecosystem health. This approach 608 

provides decision-makers with a strategy to maintain long-term ecological and hydrological 609 

balance, avoiding future trade-offs between water use and environmental protecHon. 610 

Ndahangwapo et al. (2024) showed that when a quota is applied, the planning period starts 611 

with a phase where 𝑁( < 𝑁+(𝑡), followed by a phase where 𝑁( ≥ 𝑁+(𝑡). Since this result has 612 
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already been established in the literature, proving it again here would be redundant. We 613 

therefore proceed to state the following proposiHons. 614 

 615 

Proposi#on 5. There exists a criFcal quota level 𝑊{"  such that if 𝑊{ < 𝑊{"  at the beginning of 616 

the planning period (𝑡 = 0), the quota remains binding (𝑁( < 𝑁+(𝑡)) throughout the enFre 617 

period. In contrast, if 𝑊{ ≥ 𝑊{"  at the beginning of the planning period, the quota is iniFally 618 

non-binding (𝑁( ≥ 𝑁+(𝑡)), but the system eventually transiFons into the binding quota phase 619 

at a finite Fme 620 

 621 

The proof of ProposiHon 5 can be found in Appendix 11. The quota binds when farmers want 622 

to extract more than the imposed level 𝑊{ , forcing their unconstrained opHmum down to 𝑊{ , 623 

which occurs when the policy constraint is acHve (𝑁( < 𝑁+(𝑡)). A non-binding quota occurs 624 

when the unconstrained opHmum is already less than or equal to 𝑊{ , so the constraint is 625 

inacHve (𝑁( ≥ 𝑁+(𝑡)). The criHcal quota level determines whether the quota affects opHmum 626 

extracHons, enabling regulators to control water use via the numerical level of the quota 627 

without heavy enforcement. 628 

 629 

Proposi#on 6. If the quota binds (𝑁( < 𝑁+(𝑡)) at the start of the planning period, increasing 630 

the maximum total economic value (𝜃) of prisFne GDEs’ services lengthens the duraFon of the 631 

binding quota phase. 632 

 633 

The proof of ProposiHon 6 can be found in Appendix 12. A higher economic value of GDEs (𝜃) 634 

makes the quota more effecHve, causing it to bind for a longer period. In pracHce, if society 635 

increases 𝜃 (e.g., by legally recognising GDEs’ values), the regulator can maintain the same 636 

conservaHon outcome with a less strict quota level. 637 

 638 

Proposi#on 7. When the quota is binding (𝑁( < 𝑁+(𝑡)) for 𝑡 > 0, there exists a maximum 639 

allowable quota level (𝑊{I) that ensures the water table level remains above all criFcal 640 

thresholds for the water table height. 641 

 642 

The proof of ProposiHon 7 can be found in Appendix 13. The quota level (𝑊{I) quanHfies the 643 
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maximum allowed extracHon level that keeps the water table above all criHcal thresholds 644 

each year. In other words, ecological thresholds can be directly translated into clear, 645 

enforceable quota levels. The next subsecHon deals with the implementaHon of packaging 646 

and sequencing of policy instruments. 647 

 648 

4.3 Packaging and sequencing of taxes and quotas 649 

AdopHon of quotas and taxes as standalone instruments has faced criHcism due to high 650 

transacHon costs, parHcularly for quotas, making them economically inefficient (Maddock and 651 

Haimes, 1975; Lenouvel et al., 2011; Esteban and Dinar, 2013). Combining quotas with taxes 652 

is ojen more efficient (Wetzman, 1974). For policy sequencing, one instrument may be 653 

applied first, the other later, or both simultaneously (packaging). Without intervenHon, 654 

opHmal extracHon iniHally exceeds steady-state levels and rises over Hme, making early 655 

quotas during the healthy phase effecHve, while taxes are not applied in the healthy and 656 

unhealthy phases. Mild taxes can signal risk and parHally internalize ecological value in phase 657 

2, but quotas are avoided in the unhealthy phase to preserve incenHves for efficient water 658 

use. In the severe unhealthy phase, extracHon above the quota is fully taxed, while amounts 659 

at or below the quota are untaxed. In the criHcal unhealthy phase, only quotas are applied to 660 

cap physical damage, since taxes alone cannot prevent collapse. Farmers, welfare is 661 

maximized as in EquaHon (6), subject to the new quota constraint. 662 

 663 

 𝐻̇ =

⎩
⎪
⎨

⎪
⎧

)
+,
[𝑅 − (1 − 𝛼)𝑊], if	𝑡 ≤ 𝑡!

)
+,
[𝑅 − (1 − 𝛼)𝑊], if	𝑡! < 𝑡 ≤ 𝑡"

)
+,
[𝑅 − (1 − 𝛼)𝑊], if	𝑡" < 𝑡 ≤ 𝑡#
)

<⋅+,
[𝑅 − (1 − 𝛼)𝑊], if	𝑡 > 𝑡# .

 (47) 664 

 665 

 𝛽 = �0, if	𝑊(𝑡) ≤ 𝑊{ 	(and	quota	restriction	applies)
tax, if	otherwise.

 (48) 666 

 667 

 𝜙 = �0, if	𝑊(𝑡) ≤ 𝑊{ 	(and	quota	restriction	applies)
tax, if	otherwise.

 (49) 668 

 669 
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 Ω = �1, if	𝑊(𝑡) ≤ 𝑊{ 	(and	quota	restriction	applies)
0 < Ω ≤ 1, if	otherwise.

 (50) 670 

  671 

The opHmal soluHons to the objecHve funcHon (47) and the constraints ((48), (49), and (50)) 672 

are given below. 673 

 674 

𝑊∗(𝑡) =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝐴e

9^+ + 𝐵e9^! − C
A0)

, if	𝑡 ≤ 𝑡!,

𝐸𝐴e9\+ + 𝐸𝐵e9\! − C
A0)

, if	𝑡! < 𝑡 ≤ 𝑡" ,

𝐷𝐴2e9W+ + 𝐷𝐵2e9W! − C
A0)

, if	𝑡" < 𝑡 ≤ 𝑡# 	&	𝐷𝐴2 ≤ 𝑁b(𝑡),

𝐷𝐴e9W+ + 𝐷𝐵e9W! − C
A0)

, if	��" < 𝑡 ≤ 𝑡# 	&	𝐷𝐴2 > 𝑁b(𝑡),

c!+,<
A0)

[𝐻# −
'(
)*+0B+
!)

]ec!(909%) − C
A0)

, if	𝑡 > 𝑡# 	&	𝑁) ≤ 𝑁.(𝑡),

𝑊{ , if	𝑡 > 𝑡# 	&	𝑁) > 𝑁.(𝑡).

 (51) 675 

 676 

𝐻∗(𝑡) =

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧(A0))+

+,^+
e9^+ + (A0)).

+,^!
e9^! +

'(
)*+0B

!
, if	𝑡 ≤ 𝑡!,

(A0))]+
+,\+

e9\+ + (A0))].
+,\!

e9\! +
'(
)*+0VVV

666
, if	𝑡! < 𝑡 ≤ 𝑡" ,

(A0))X+'
+,W+

e9W+ + (A0))X.'
+,W!

e9W! +
'(
)*+0VV

!!!
, if	𝑡" < 𝑡 ≤ 𝑡# 	&	𝐷𝐴2 ≤ 𝑁b(𝑡),

(A0))X+
+,W+

e9W+ + (A0))X.
+,W!

e9W! +
'(
)*+0BBB

!!!
, if	𝑡" < 𝑡 ≤ 𝑡# 	&	𝐷𝐴2 > 𝑁b(𝑡),

[𝐻# −
'(
)*+0B+
!)

]ec!(909%) +
'(
)*+0B+
!)

, if	𝑡 > 𝑡# 	&	𝑁) ≤ 𝑁.(𝑡),

[𝐻# −
'(
)*+0B0(9)

!)
]ec!(909%) +

'(
)*+0B0(9)

!)
, if	𝑡 > 𝑡# 	&	𝑁) > 𝑁.(𝑡).

 (52) 677 

where, 𝑎' =
:0D:!E>!))*+,-.

'
 <0, 𝐺M =

N5
[2%020]!

, 𝑢1 = −𝑖𝑘𝐶) +
'T%L3
<

, 𝑁) = −𝑖𝑔 − 𝑖𝑘𝐶( +678 

%S+C
<+,

− 2𝑚𝑘𝐺M𝐻., and 𝑁.(𝑡) =
!)[$a (A0))EC]

c!+,<
e0c!(909%) − 𝐻#𝑢1 +

:C
A0)

. 679 

 680 

 𝐷𝐵2 = W!+,
A0)

e0W!9$[𝐻" −
'(
)*+0VV

!!!
−

[2%0
'(
)*+*??
### ]0[2$0

'(
)*+*??
### ][8!(:%*:$)

[8+(:%*:$)0[8!(:%*:$)
]. (53) 681 

   682 

 𝐷𝐴2 = W++,
A0)

[
[2%0

'(
)*+*??
### ]0[2$0

'(
)*+*??
### ][8!(:%*:$)

[8+:%0[8+:$<8!(:%*:$)
]. (54) 683 

The proof of the packaging and sequencing resoluHon can be found in Appendix 14. The rest 684 
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of the parameters were defined in the previous secHons. We present three proposiHons 685 

about packaging and sequencing of taxes and quotas.  686 

 687 

Proposi#on 8. There exists a criFcal quota level 𝑊{"  such that if 𝑊{ < 𝑊{"  at the beginning of 688 

the criFcally unhealthy phase (𝑡 = 𝑡#), the system is iniFally binding (𝑁) > 𝑁.(𝑡)), but the 689 

system eventually transiFons into the non-binding quota phase at a finite Fme unFl the end 690 

of the planning period. If 𝑊{ > 𝑊{"  at the beginning of the criFcally unhealthy phase, the quota 691 

remains unbinding throughout the enFre phase. 692 

 693 

The proof of ProposiHon 8 can be found in Appendix 15. This proposiHon shows that even in 694 

the criHcally unhealthy phase, a well-chosen quota level can prevent over-extracHon. If the 695 

quota level is set below the criHcal level, the system starts under pressure but eventually 696 

relaxes, allowing recovery into a non-binding quota regime before the planning horizon ends. 697 

 698 

Proposi#on 9. When the quota is binding (𝑁) > 𝑁.(𝑡)) for 𝑡 > 𝑡#, there exists a maximum 699 

allowable quota level (𝑊{%) that ensures the water table level remains above the aquifer 700 

boOom level (𝐻.). 701 

 702 

The proof of ProposiHon 9 can be found in Appendix 16. This proposiHon implies that even in 703 

the criHcally unhealthy phase, groundwater use can be regulated to avoid complete GDEs 704 

collapse. By capping quotas at or below 𝑊{%, policymakers can guarantee that extracHon never 705 

pushes the water table to the the aquifer bomom, thus prevenHng irreversible damage and 706 

securing minimum ecosystem survival. 707 

 708 

Proposi#on 10. If the quota binds (𝑁) > 𝑁.(𝑡)) at the beginning of the criFcally unhealthy 709 

phase, increasing the maximum total economic value (𝜃) of prisFne GDEs’ services shortens 710 

the duraFon of the binding quota phase. 711 

 712 

The proof of ProposiHon 10 can be found in Appendix 17. This proposiHon shows how the 713 

economic valuaHon of GDEs (𝜃) directly affects water management outcomes. When 𝜃 714 

increases, the regulator places greater weight on conserving GDEs, which Hghtens the opHmal 715 
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extracHon path. As a result, even if the quota iniHally binds at the start of the criHcally 716 

unhealthy phase, the system exits the binding regime sooner, reducing ecological stress. The 717 

next secHon derives the opHmal soluHons when there is LS but no policy intervenHons are in 718 

place. 719 

 720 

4.4 LS-GDE and No policy interven#ons 721 

In the absence of any policy intervenHons and under condiHons where LS is present, we add 722 

a new constraint to equaHons (7) and (8). That is, we assume 𝛽 = 𝜙(𝑊,𝐻) = 0, meaning no 723 

tax policy is applied. Under these condiHons, the opHmal extracHon and water table levels, 724 

denoted by 𝑊∗(𝑡) and 𝐻∗(𝑡), are given by the following expressions. 725 

 726 

 𝑊∗(𝑡) =

⎩
⎪⎪
⎨

⎪⎪
⎧𝐴e

9^+ + 𝐵e9^! − C
A0)

, if	𝑡 ≤ 𝑡!
𝐸𝐴e9\+ + 𝐸𝐵e9\! − C

A0)
, if	𝑡! < 𝑡 ≤ 𝑡"

𝐷𝐴1e9W+ + 𝐷𝐵1e9W! − C
A0)

, if	𝑡" < 𝑡 ≤ 𝑡#
d!+,<
A0)

[𝐻# −
'(
)*+0B

c
]ed!(909%) − C

��0)
, if	𝑡 > 𝑡# .

 (55) 727 

  728 

 729 

 𝐻∗(𝑡) =
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, if	𝑡! < 𝑡 ≤ 𝑡"

(A0))X+)
+,W+

e9W+ + (A0))X.)
+,W!

e9W! +
'(
)*+0BBB)

!!!
, if	𝑡" < 𝑡 ≤ 𝑡#

[𝐻# −
'(
)*+0B

c
]ed!(909%) +

'(
)*+0B

c
, if	𝑡 > 𝑡# .

 (56) 730 

where, 𝑣' =
:0D:!E>c)*+,-.

'
 <0, 𝐺M =

N5
[2%020]!

, 𝑎 = −𝑖𝑘𝐶) +
'T%L3
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−731 

2𝑚𝑘𝐺M𝐻. , 𝑀𝑀 = C
<+,

, 𝑧),' =
:±D:!E>⋅!!!⋅)*+-.

'
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, 𝑢𝑢𝑢 = 2𝑚𝑘𝐺Z − 𝑖𝑘𝐶), 732 

𝑁𝑁𝑁1 = −𝑖𝑔 − 𝑖𝑘𝐶( +
S+C%
+,

− 2𝑚𝑘𝐺Z𝐻#, and 733 

 734 

 𝐷𝐵1 = W!+,
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]. (57) 735 
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   736 

 𝐷𝐴1 = W++,
A0)

[
[2%0

'(
)*+*777+

### ]0[2$0
'(
)*+*777+

### ][8!(:%*:$)

[8+:%0[8+:$<8!(:%*:$)
]. (58) 737 

 738 

The proof of the “LS-GDEs and no policy intervenHon” resoluHon can be found in Appendix 739 

18. The rest of the parameters were defined in the previous secHons. The theoreHcal findings 740 

are illustrated through an empirical applicaHon to the Dendron aquifer system in South Africa. 741 

 742 

5. Applica#on to the Dendron aquifer 743 

The Dendron aquifer system in South Africa’s Hout River Catchment, part of the Limpopo 744 

River Basin, is a crucial water source in this semi-arid region, where average annual rainfall is 745 

only 407	𝑚𝑚. Since the 1970s, both commercial and non-commercial farmers have relied on 746 

this aquifer for irrigaHon, with groundwater withdrawals increasing significantly over Hme 747 

(Ndahangwapo et al., 2024). Between 1968 and 1986, irrigated land expanded by 170%, 748 

leading to a 133% rise in groundwater extracHon (Masiyandima et al., 2002). Persistent 749 

droughts and weak enforcement of groundwater regulaHons have further exacerbated the 750 

depleHon of water levels. 751 

 752 

GDEs are recognized by the Water Research Commission in South Africa (Colvin et al., 2003), 753 

although they are not explicitly menHoned in the NaHonal Water Act of 1998. The Act ensures 754 

water is reserved for both human and environmental needs (Rohde et al., 2017). However, its 755 

emphasis on surface water and lack of clear disHncHon between surface and groundwater has 756 

limited effecHve consideraHon of GDEs in water management (Aldous and Bach, 2011). Land 757 

subsidence (LS), caused by excessive groundwater extracHon, has been observed in Dendron, 758 

parHcularly in areas with clay sediments prone to compacHon (Oosthuizen & Richardson, 759 

2011). Over-extracHon has also negaHvely affected groundwater-dependent ecosystems 760 

(GDEs), such as riparian forests in the Limpopo River's seasonal alluvial systems, which are 761 

highly sensiHve to water table declines (Colvin et al., 2007). The region’s economy, heavily 762 

dependent on agriculture, faces rising irrigaHon costs as water tables drop. Though the 763 

NaHonal Water Act of 1998 mandates permits for borehole irrigaHon, weak enforcement has 764 

allowed over-extracHon to persist (Fallon et al., 2018). Despite annual groundwater 765 

assessments, water levels conHnue to decline, further degrading GDEs. 766 
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 767 

The aquifer’s vulnerability is compounded by its geology and hydrology. Fine-grained clay 768 

sediments make it parHcularly prone to subsidence under excessive pumping. The aquifer’s 769 

esHmated storage capacity is 124 million cubic meters, but most usable groundwater is found 770 

in the lower fractured zone, as the upper weathered zone has dried out (Jolly, 1986). This 771 

over-reliance on the deeper aquifer increases the risk of depleHon. Without stricter 772 

enforcement of water regulaHons and sustainable management strategies, groundwater 773 

over-extracHon, land subsidence, and ecosystem degradaHon will conHnue to threaten both 774 

the region’s ecological health and its agricultural viability. Below is the table with the 775 

hydrological and economic values of the Dendron aquifer system as obtained from the 776 

menHoned sources. 777 

 778 

Table  1. Hydrological and economic values of the Dendron aquifer system. 779 

 780 

Parameter   DescripHon   Units   Value    Source 

𝑘  Water demand slope   $/𝑀𝑚-   -0.0425 Ndahangwapo et al. 

(2024) 

𝑔  Water demand intercept   $/𝑀𝑚-   62  Ndahangwapo et al. 

(2024) 

𝐶(  Pumping costs intercept   $/𝑀𝑚-   5209.84  Ndahangwapo et al. 

(2024) 

𝐶)  Pumping costs slope   $/𝑀𝑚-	𝑚   -3.94  Ndahangwapo et al. 

(2024) 

𝛼  Return flow coefficient  dimensionless   0.2  Jolly (1986) 

𝐻(  Current water table   𝑚   1224.5 Fallon et al. (2018) 

𝐻e  CriHcal water table level  𝑚 1189.5 Ndahangwapo et al. 

(2024) 

𝑅  Natural recharge   𝑀𝑚-/𝑦𝑒𝑎𝑟   7.35  Jolly (1986) 

𝐴  Aquifer system area   𝑘𝑚'   1600  Masiyandima et al. 

(2002)  

𝑆  StoraHvity coefficient  dimensionless   0.0025  Masiyandima et al. 



29 
 

(2002) 

𝑖  Social discount rate   %   0.08  Conningarth 

Economists 

(2014, pp.69-70). 

𝛽  Pigouvian tax per unit of 

land sinking 

 $/m   1,245  Ndahangwapo et al. 

(2024) 

𝜂  Water density   𝐾𝑔/𝑚-   1000  Wade et al. (2018) 

𝑏  Aquifer system’s thickness    𝑚   110 Masiyandima et al. 

(2002) 

𝜓  Aquifer system’s 

compressibility 

 𝑚𝑠'/𝑘𝑔   5.1 × 100)(  Ndahangwapo et al. 

(2024) 

𝑛  Porosity   dimensionless   0.34 Woessner and 

 Poeter (2020) 

𝜀  GravitaHonal acceleraHon   𝑚/𝑠'   9.81  Wade et al. (2018) 

𝑛7  Vadose moisture/ Total 

volume  

 

dimensionless  

 0.1  Jolly (1986) 

𝜋  Unit weight of water   𝑁/𝑚-   9810  Poland and Davis 

 (1969) 

q  Ecosystem services annual 

economic value 

 𝑀𝑖𝑙𝑙𝑖𝑜𝑛	$  2.53  Authors 

𝐻.  Aquifer bomom  𝑚. 𝑎. 𝑠. 𝑙  1169.5  Authors 

𝐻!  Unhealthy phase criHcal 

threshold 

 𝑚. 𝑎. 𝑠. 𝑙  1200.5   Authors 

𝛿  Unhealthy phase criHcal 

threshold 

 

dimensionless 

 0.5  Esteban et al. 

(2021) 

𝜌  Severe unhealthy phase 

criHcal threshold 

dimensionless  0.35  Authors 

𝛾  CriHcal unhealthy phase 

criHcal threshold 

dimensionless  0.15  Authors 

𝐻"   Severe unhealthy phase 

criHcal threshold 

 𝑚. 𝑎. 𝑠. 𝑙  1191.5  Ndahangwapo et 

al. (2024) 
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𝐻#   CriHcal unhealthy phase 

criHcal threshold 

 𝑚. 𝑎. 𝑠. 𝑙  1189.5  Authors 

 781 

 782 

 783 

According to Ndahangwapo et al. (2024), the effecHve tax rate per unit of land sinking is	𝛽 =784 

1245 US dollars, the empirical tax rate is 𝛽 = 3345 US dollars, and the increase in the 785 

effecHve tax rate which is used for the sensiHvity analysis is 𝛽 = 4	𝑀𝑖𝑙𝑙𝑖𝑜𝑛 US dollars. We 786 

make use of the ame values. Ndahangwapo et al. (2024) determined that the effecHve 787 

groundwater abstracHon quota for the Dendron aquifer, when excluding the effects of land 788 

subsidence and ecosystem health consideraHons, is approximately 10	𝑀𝑚³/𝑦𝑒𝑎𝑟. By 789 

contrast, the prevailing quota of 14	𝑀𝑚³/𝑦𝑒𝑎𝑟 was found to be unsustainable and ineffecHve 790 

in safeguarding the long-term viability of the aquifer system. For the purposes of the 791 

sensiHvity analysis, this exisHng quota level will be considered alongside an alternaHve quota 792 

of 20	𝑀𝑚³/𝑦𝑒𝑎𝑟, consistent with the approach adopted by Ndahangwapo et al. (2024). 793 

 794 

The aquifer bomom 𝐻. = 1169.5	𝑚. 𝑎. 𝑠. 𝑙 (Jolly, 1986). level. There is limle groundwater at 795 

heights below 1169.5 meters above sea level (Jolly, 1986). Since the aquifer thickness is 110 796 

meters, the aquifer top water table height is 1279.5	𝑚. 𝑎. 𝑠. 𝑙. We assume that the GDEs’ 797 

health criHcal threshold beyond which the GDEs’ health switches to the unhealthy phase is 798 

δ=0.5 (Esteban et al., 2021). In addiHon, without loss of generality, we assume that the GDEs’ 799 

health criHcal threshold beyond which the GDEs’ health switches to the severe unhealthy 800 

phase is ρ=0.35, and that the GDEs’ health criHcal threshold beyond which the GDEs’ health 801 

switches to the criHcal unhealthy phase is γ=0.15. 802 

 803 

We further assume that the GDEs criHcal threshold for the water table height beyond which 804 

the GDEs’ health switches to the severe unhealthy phase is 𝐻# = 1189.5	𝑚. 𝑎. 𝑠. 𝑙, just 20 𝑚 805 

before the aquifer bomom (Ndahangwapo et al., 2024). The GDEs criHcal threshold for the 806 

water table height beyond which the GDEs’ health switches to the criHcal unhealthy phase is 807 

𝐻" = 1191.5	𝑚. 𝑎. 𝑠. 𝑙. We were unable to find an exact economic value of the ecosystem 808 

services provided by the Dendron Aquifer from the literature. Therefore, we used the carbon 809 

sequestraHon value from the Mogale’s Gate Biodiversity Centre as a proxy. The Mogale’s Gate 810 
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Biodiversity Centre, a game reserve in Gauteng province, South Africa, hosts approximately 811 

702 plant species (Mudavanhu et al., 2017). The esHmated economic value of carbon 812 

sequestraHon at the reserve is approximately 2,538,658 US dollars. GDEs, such as wetlands 813 

and riparian forests, play a key role in carbon sequestraHon. Their stable groundwater 814 

supports plant growth and the accumulaHon of carbon-rich soils, storing carbon for centuries. 815 

If groundwater is depleted, this stored carbon can be released as CO₂ and methane. 816 

 817 

6. Results and discussions 818 

This secHon compares three groundwater management policy instruments, Pigouvian taxes, 819 

withdrawal quotas, and their combined use involving the packaging and sequencing of taxes 820 

and quotas. The focus is on how each policy intrument affects groundwater conservaHon, 821 

farmers’ welfare, and ecosystem health under land subsidence impacts. 822 

 823 

6.1 Base case scenario (No LS, no GDEs scenario and no policy interven#ons) 824 

A 600-year planning horizon is adopted, as the system converges to a steady state within this 825 

period. We observe (Figure 2) groundwater extracHons rising sharply during the first 50 years. 826 

Ajer that, there is a sharp decline for about 14 years, followed by a more gradual decline 827 

unHl the system eventually reaches a steady state. During the first 50 years, as groundwater 828 

extracHon expands, water becomes physically scarcer. ExtracHons rise beyond the natural 829 

recharge rate of 7.35	𝑀𝑚³ per year, which means future groundwater use must fall. 830 

Economically, the falling water table pushes up pumping costs, conHnuously making 831 

groundwater increasingly expensive. At its highest, extracHon peaks at 60	𝑀𝑚³ in year 50, 832 

then declines unHl stabilizing. Over the whole planning period, the water table keeps falling 833 

because the annual extracHons are comparaHvely higher than the annual recharge. For 834 

example, in year 500 extracHon is	9.32	𝑀𝑚³, above the 7.35	𝑀𝑚³ annual recharge. This 835 

reflects the over-exploitaHon of the aquifer, a finding also highlighted by Ndahangwapo et al. 836 

(2024).  837 

 838 

Between years 50 and	64, extracHons fall sharply. This is because the marginal cost of 839 

extracHon (MEC) is rising rapidly as the water table falls steeply, making each unit of 840 

groundwater far more expensive to lij. Farmers respond by cuong back water use to avoid 841 

unprofitable costs. Ajer year 64, the rise in extracHon costs slows down. By then, the water 842 
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table may have stabilized in a deeper zone, so addiHonal declines are slower. That means the 843 

incremental cost of pumping (MEC) is sHll rising, but at a slower rate. This explains the gradual 844 

decline in extracHons unHl the steady state is reached. 845 

 846 

 847 

 848 
Figure 2 (a). OpHmal paths of groundwater extracHons and water table levels under the 849 

baseline scenario.  850 

 851 

Under the current calibraHon, with a constant natural recharge of 𝑅 = 7.5𝑀𝑚³ per year, the 852 

aquifer never recovers. The recharge is too small relaHve to the rate of pumping, causing 𝐻(𝑡) 853 

to conHnue declining over Hme. The water table begins to rise only when pumping is reduced 854 

to a level at which recharge plus return flow exceed total extracHon. This condiHon is saHsfied 855 

only when annual pumping declines below the equilibrium groundwater extracHon level, C
A0)

. 856 

Thus, no increase in the water table level is observed throughout the planning horizon.  857 

 858 

We account for uncertainty in the natural recharge rate (𝑅	 ≈ 	7.5	𝑀𝑚³) by conducHng a 859 

Monte Carlo simulaHon in which R varies according to historical rainfall variability in the 860 

Dendron area. Gridded rainfall data (1900–2015), extracted using the area’s geographic 861 

coordinates, were used to characterise this variability. A Gamma distribuHon was selected 862 

because it provided the best fit to the rainfall dataset and is widely applied in modelling 863 

rainfall and groundwater recharge (e.g., Husak et al., 2007; Bermudez et al., 2017; MarHnez-864 

Villalobos and Neelin, 2019; Sen, 2019; Ximenes et al., 2021). Further details on the simulaHon 865 

procedure and datasets are provided in Appendix 20. All the simulaHons were run 300 Hmes 866 

in all secHons. 867 
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 868 

Across 300 simulated recharge realizaHons, extracHon iniHally rises sharply before declining 869 

toward a long-run level (Figure 2(b)). We observe (Figure 2(c)) that sample extracHon paths 870 

(thin red lines) demonstrate that uncertainty in recharge generates a wide dispersion in short-871 

run extracHon rates, with some realizaHons showing rapid declines and others stabilizing 872 

more gradually. Despite this variability, the mean extracHon path (thick red line) converges to 873 

approximately 9.6 𝑀𝑚³/year by around 𝑡	 ≈ 	350 − 400, indicaHng the system’s long-run 874 

equilibrium in the absence of management. The spread of the simulated trajectories narrows 875 

over Hme, suggesHng that extracHon becomes less sensiHve to recharge uncertainty as the 876 

system approaches equilibrium. 877 

 878 

 879 
Figure 2 (b). Monte Carlo simulaHons of opHmal groundwater extracHon and water-table 880 

paths under the baseline scenario. 881 

 882 

The simulated water-table trajectories (thin blue lines) reflect the same recharge-driven 883 

uncertainty (Figure 2(b)). Water levels decline steeply at first, with greater divergence in early 884 

periods, but gradually stabilize as the system converges toward its equilibrium level. The 885 

mean path (thick blue line) semles around 𝐻	 ≈ 	1172.8	𝑚 by 𝑡	 ≈ 	350 − 400. The wide 886 

iniHal spread reflects the dependence of early water-level dynamics on rainfall variability, 887 

whereas the later narrowing indicates that long-run groundwater condiHons are more stable, 888 

even under significant recharge uncertainty when no policy constraints are present. 889 

 890 
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 891 

Figure 2 (c). A blow-out of the lej panel of the graph in Figure 2(b) for years t = 10 to 90. 892 

 893 

 894 

6.2 Scenario with Land Subsidence, GDEs, and No Policy Interven#on 895 

Without policy intervenHons under the LS and GDEs scenarios, farmers are directly affected 896 

by the loss of the aquifer system’s storage capacity. We observe (Figure 3(a)) that in phase 1 897 

(healthy phase), farmers pump aggressively because the water table is shallow, extracHon 898 

costs are low, and there are no policy intervenHons. ExtracHons rise gradually to 64.5 Mm³ (Ω 899 

= 0.4) and 59.5 Mm³ (Ω = 0.49) before the system shijs into the unhealthy phase (phase 2), 900 

where Ω captures the impact of groundwater extracHon on aquifer storage capacity. In phase 901 

2, extracHons conHnue increasing but now sharply, reaching peaks of 116 Mm³ (Ω = 0.4) and 902 

115 Mm³ (Ω = 0.49). Entering phase 3 (severe unhealthy) in years 187 and 189, respecHvely, 903 

extracHons fall to 101 Mm³ (Ω = 0.4) and 94 Mm³ (Ω = 0.49). As shown in Figure 3(b), 904 

extracHons then begin to rise again once LS emerges, since LS starts in phase 3 and conHnues 905 

into phase 4. Even without taxes, extracHons can decline in phase 3 because the system 906 

becomes more “expensive’’ and “fragile’’ when subsidence begins. CompacHon amplifies 907 

depleHon by reducing hydraulic conducHvity and increasing pumping lij. Lower hydraulic 908 

conducHvity slows the rate at which water can move through the aquifer, making it more 909 

difficult to sustain previous extracHon levels without inducing addiHonal drawdown. In the 910 

absence of policy intervenHon, farmers conHnue extracHng heavily through phases 2 and 3 to 911 

maximize short-term profit, prioriHzing immediate economic returns over long-term aquifer 912 

sustainability despite escalaHng ecological stress. 913 
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 914 

 915 
 916 

Figure 3(a). OpHmal paths of groundwater extracHons and water table levels under different 917 

values of the constant (Ω) represenHng the impact of groundwater extracHon on the aquifer 918 

system's storage capacity.  919 

Note: Yellow solid line shows the empirical constant (Ω = 0.4), the black domed line shows 920 

the increase in the empirical constant (Ω = 0.49). 921 

 922 

InelasHc compacHon, which permanently reduces aquifer storage capacity, begins in phase 4 923 

(criHcally unhealthy phase). The storage capacity of the aquifer system is affected by the size 924 

of the constant (Ω) in phase 4, and the larger it is, the more resistant/unaffected that area is 925 

to land sinking. This is because the smaller the LS impact, the larger the constant Ω is 926 

(Ndahangwapo et al., 2024). We observe (Figure 3(a)) that when the LS impact is small (large 927 

Ω), the aquifer is sHll able to release water more easily, even at deeper levels. Because the 928 

system can sHll supply water without severe permanent losses, the transiHon into the criHcal 929 

stage (phase 4) is delayed (Figure 3(b)). However, when the LS impact is big (small Ω), it signals 930 

that the aquifer’s ability to release water has already been heavily damaged. This accelerates 931 

the system’s transiHon into phase 4 (Figure 3(b)), because the system reaches the point of 932 

permanent compacHon and reduced aquifer storage capacity much faster. With no policy 933 

intervenHons, farmers start with high extracHon from year zero. But once storage capacity 934 

reduces, the water table falls, raising pumping costs. Farmers therefore reduce their 935 

extracHons in phase 4.  936 

 937 
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 938 
 939 

Figure 3(b). A blow-out of the graph in Figure 3(a) for years t = 160 to 190. 940 

 941 

We observe (Figure 3(c)) that cumulaHve LS remains equal to zero in phases 1 and 2, 942 

regardless of the value of Ω. The reason is that in these phases, ecosystem stress comes only 943 

from declining groundwater levels since LS has not yet occurred. In phase 3, stress intensifies 944 

as it results from both further groundwater declines and rising LS caused by elasHc 945 

compacHon. In phase 4, stress is driven by groundwater declines, LS, and aquifer storage 946 

capacity loss.  947 

 948 

 949 
Figure 3(c). Ecosystem health status and cumulaHve LS under different values of the constant 950 

(Ω) represenHng the impact of groundwater extracHon on the aquifer system's storage 951 

capacity.  952 
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Note: Yellow solid line shows the empirical constant (Ω = 0.4), the black domed line shows 953 

the increase in the empirical constant (Ω = 0.49). 954 

 955 

We observe (Figure 3(c)) that, in phase 1, when the LS impact is smaller (larger Ω), GDEs’ 956 

health is similar to the case when the LS impact is larger. In phase 3, aquifer storage capacity 957 

is unaffected by LS, so the only LS effect comes through the elasFc compacHon term, which 958 

reduces the water table but does not amplify extracHon costs via Ω. When Ω is small (large LS 959 

impact), the system already experienced faster drawdown and higher extracHon costs in 960 

phase 2, leading to farmers reducing their extracHons by the Hme phase 3 begins. Farmers 961 

extract more before the larger storage capacity is lost in phase 4, leading to higher extracHons 962 

when Ω is small (large LS impact) compared to the case when Ω is large (small LS impact). This 963 

higher pumping increases water-table decline and rises cumulaHve LS, leaving GDEs’ health 964 

lower in phase 3 for the larger LS-impact (small Ω) case (Figure 3(d)). 965 

 966 

We further observe (Figure 3(d)) that the GDEs’ health when the LS impact is larger (smaller 967 

Ω) suddenly rises above the health level for the case when the LS impact is smaller. This 968 

happens because extracHons are lower when the LS impact is larger throughout phase 4 969 

(Figure 3(b)). With a small Ω, the extracHon costs rise rapidly as LS erodes aquifer storage 970 

capacity, causing farmers to significantly reduce pumping in phase 4. In contrast, when Ω is 971 

large and the impact of LS on aquifer storage capacity is small, extracHon remains relaHvely 972 

inexpensive, allowing farmers to maintain higher pumping levels. Likewise, cumulaHve LS 973 

when the LS impact is larger is lower compared to the case when the LS impact is smaller in 974 

phase 4. 975 

 976 
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 977 

Figure 3(d). A blow-out of the right panel of the graph in Figure 3(c) for years t = 140 to 240. 978 

 979 

We observe (Figure 3(e)) that when LS reduces the aquifer’s storage capacity, the Monte Carlo 980 

results indicate that the system transiHons into unhealthy ecological condiHons with notable 981 

variability driven by recharge uncertainty. The mean switching Hme to the unhealthy phase is 982 

≈177 years, with a relaHvely widespread (std = 20.3). The 10th–90th percenHle range (145–983 

198 years) shows that under some recharge realizaHons the system degrades much sooner, 984 

while in others the transiHon is delayed by several decades. This sensiHvity reflects the strong 985 

influence of recharge variability when storage capacity is reduced. The transiHon to the severe 986 

unhealthy phase occurs shortly thereajer, with a mean of ≈191 years and lower variability 987 

(std = 8.3). The narrower percenHle range (185–201 years) indicates that once the system 988 

enters the unhealthy regime, its progression toward the severe phase is much less sensiHve 989 

to recharge uncertainty. Reduced storage amplifies the pace at which degradaHon unfolds. 990 

The shij into the criHcally unhealthy phase occurs at a mean of ≈208 years, again with 991 

substanHal variability (std = 21.8). The 10th–90th percenHle interval (188–239 years) shows 992 

that in some realizaHons the system reaches criHcal condiHons soon ajer entering the severe 993 

phase, while in others the transiHon is more gradual. This reflects the combined influence of 994 

declining water-table levels and accumulaHng LS on GDEs’ health.  995 

 996 
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 997 
Figure 3(e). Monte Carlo simulaHons of opHmal paths of groundwater extracHons and water 998 

table levels under the effecHve constant (Ω = 0.4) represenHng the impact of groundwater 999 

extracHon on the aquifer system's storage capacity.  1000 

 1001 

To assess how the magnitude of LS impacts on aquifer storage capacity influences the Hming 1002 

of ecological degradaHon (Figure 3(f)), we compare the mean Monte Carlo switching Hmes 1003 

for the two scenarios: (i) large LS impact on aquifer storage capacity and (ii) small LS impact. 1004 

In both cases, switching Hmes represent transiHons between the unhealthy (𝑡!), severe 1005 

unhealthy (𝑡"), and criHcally unhealthy (𝑡#) ecological phases. Under the small LS impact, the 1006 

mean switching Hmes occur at 176.99 years for entry into the unhealthy phase, 191.49 years 1007 

for the severe unhealthy phase, and 207.65 years for the criHcally unhealthy phase. When the 1008 

LS impact is larger, these transiHons occur at 175.99 years, 190.85 years, and 203.90 years, 1009 

respecHvely. Comparing the two scenarios shows that a larger LS impact leads to earlier 1010 

switching for the first two thresholds, but importantly, an earlier transiHon into the criHcally 1011 

unhealthy phase. The differences are small for tᵤ (≈1 year earlier) and 𝑡"  (≈0.6 years earlier), 1012 

indicaHng that moderate improvements in aquifer storage capacity delay the onset of early 1013 

ecological degradaHon. However, the mean 𝑡#  shijs from 207.65 years (small LS) to 203.90 1014 

years (large LS), indicaHng that when LS impact is smaller, the system reaches the criHcally 1015 

unhealthy phase ~3.7 years later. 1016 

 1017 
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 1018 
Figure 3(f). Mean Monte Carlo simulaHons of opHmal paths of groundwater extracHons and 1019 

water table levels under different values of the constant (Ω) represenHng the impact of 1020 

groundwater extracHon on the aquifer system's storage capacity.  1021 

Note: Yellow solid line shows the empirical constant (Ω = 0.4), the black domed line shows 1022 

the increase in the empirical constant (Ω = 0.49). 1023 

 1024 

6.3 LS - GDEs Scenario with Taxes 1025 

In our model, the parameter 𝛽 represents the Pigouvian tax per unit of land sinking. This tax 1026 

directly targets LS caused by farmers’ groundwater extracHons. We observe (Figure 4(a)) that 1027 

a small increase in 𝛽 do not significantly change the opHmal extracHon paths because of the 1028 

very low compressibility of the Dendron aquifer. For illustraHon, a very high tax rate of 𝛽	 =1029 

	4	𝑀𝑖𝑙𝑙𝑖𝑜𝑛 is used, following Ndahangwapo et al. (2024). We observe (Figure 4(a)) that in 1030 

phase 1 (healthy phase), farmers pump aggressively throughout. ExtracHons rise gradually to 1031 

68.3	𝑀𝑚³ (𝛽	 = 	1245), 67.4	𝑀𝑚³ (𝛽	 = 	3345), and 30.8	𝑀𝑚³ (𝛽	 = 	4	𝑀𝑖𝑙𝑙𝑖𝑜𝑛). The 1032 

system shijs into phase 2 (unhealthy) in years 163 (𝛽	 = 	1245), 170 (𝛽	 = 	3345), and 207 1033 

(𝛽	 = 	4	𝑀𝑖𝑙𝑙𝑖𝑜𝑛), where withdrawals rise sharply to 132.4	𝑀𝑚³ (𝛽	 = 	1245), 125.1	𝑀𝑚³ 1034 

(𝛽	 = 	3345), and 102.1	𝑀𝑚³ (𝛽	 = 	4	𝑀𝑖𝑙𝑙𝑖𝑜𝑛). The conHnuous increase in extracHons 1035 

happens because there are no policy intervenHons, as the tax policy applies only in phases 3 1036 

and 4 when LS begins. The severe unhealthy phase (phase 3) is entered in years 197 (𝛽	 =1037 

	1245), 200 (𝛽	 = 	3345), and 214 (𝛽	 = 	4	𝑀𝑖𝑙𝑙𝑖𝑜𝑛).  1038 

 1039 

 1040 

 1041 
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 1042 
Figure 4(a). OpHmal paths of groundwater extracHons and water table levels under different 1043 

Pigouvian tax rates per unit of land sinking.   1044 

Note: Red solid line shows the effecHve tax rate per unit of land sinking (𝛽 = 1,245), the black 1045 

solid line shows the increase in the effecHve tax rate (𝛽 = 4	Million), and the green domed 1046 

line shows the empirical tax rates (𝛽 = 3,345).   1047 

 1048 

We further observe (Figure 4(a) and Figure 4(b)) that higher tax rates reduce extracHons and 1049 

delay aquifer storage capacity loss. At the start of phase 3, with a higher tax rate (𝛽	 =1050 

	4	𝑀𝑖𝑙𝑙𝑖𝑜𝑛), extracHons drop by 64.8	𝑀𝑚³/𝑦𝑒𝑎𝑟 (from 102.1 to 37.3	𝑀𝑚³/𝑦𝑒𝑎𝑟), compared 1051 

to 47	𝑀𝑚³/𝑦𝑒𝑎𝑟 (from 132.4 to 85.4	𝑀𝑚³/𝑦𝑒𝑎𝑟) with a lower tax (𝛽	 = 	1245). The criHcal 1052 

unhealthy phase (phase 4) is reached later in year 222 with a high tax (𝛽	 = 	4	𝑀𝑖𝑙𝑙𝑖𝑜𝑛), versus 1053 

year 201 with a low tax (𝛽	 = 	1245), delaying permanent aquifer storage loss. We also 1054 

observe (Figure 4(b)) that the water table stays higher from phase 3 under a higher tax, which 1055 

is good for groundwater conservaHon. At the start of phase 4, with a higher tax (𝛽	 =1056 

	4	𝑀𝑖𝑙𝑙𝑖𝑜𝑛), extracHons fall to 11.2	𝑀𝑚³/𝑦𝑒𝑎𝑟, compared to 31.1	𝑀𝑚³/𝑦𝑒𝑎𝑟 under a lower 1057 

tax rate (𝛽	 = 	1245). The results show that higher tax rates lead to lower extracHon levels 1058 

and help maintain a higher water table over Hme. By reducing pumping, the Pigouvian tax 1059 

slows groundwater declines and delays the onset of permanent aquifer storage loss. 1060 

Economically, the tax is efficient because it internalizes the external costs of land subsidence, 1061 

aligning farmers’ decisions with the long-term sustainability of the aquifer.  1062 

 1063 

 1064 

 1065 
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 1066 

 1067 

 1068 
Figure 4(b). A blow-out of the lej panel of the graph in Figure 4(a) for years t = 170 to 260. 1069 

 1070 

The tax per unit of land sinking (𝛽) directly targets the LS caused by farmers’ groundwater 1071 

extracHons, which also leads to further degradaHon of GDEs’ health. By imposing 𝛽, farmers 1072 

are encouraged to reduce groundwater withdrawals, which miHgates LS and slows the decline 1073 

in GDEs’ health. We observe (Figure 4(c)) that GDEs’ health is higher when a higher tax rate 1074 

per unit of land sinking (𝛽	 = 	4	𝑀𝑖𝑙𝑙𝑖𝑜𝑛) is applied compared to a lower tax rate  (𝛽	 =1075 

	1245). A higher tax rate also delays GDEs’ health from entering the criHcally unhealthy phase. 1076 

Likewise, cumulaHve LS is lower under a higher tax rate  (𝛽	 = 	4	𝑀𝑖𝑙𝑙𝑖𝑜𝑛) compared to the 1077 

case with a lower tax  (𝛽	 = 	1245). In conclusion, higher tax rates minimize cumulaHve LS, 1078 

postpone the shij into the criHcally unhealthy phase, and lead to a higher long-run 1079 

equilibrium level of ecosystem health compared to lower tax scenarios. Economically, this 1080 

shows that well-calibrated Pigouvian taxes can align private incenHves with ecological 1081 

sustainability, preserving both aquifer funcHon and GDEs’ health while moderaHng long-term 1082 

extracHon costs. 1083 

 1084 

 1085 

 1086 
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 1087 

Figure 4(c). Ecosystem health status and cumulaHve LS under different Pigouvian tax rates per 1088 

unit of land sinking.   1089 

Note: Red solid line shows the effecHve tax rate per unit of land sinking (𝛽 = 1,245), the black 1090 

solid line shows the increase in the effecHve tax rate (𝛽 = 4	𝑀𝑖𝑙𝑙𝑖𝑜𝑛), and the green domed 1091 

line shows the empirical tax rates (𝛽 = 3,345).    1092 

 1093 

The Monte Carlo results show (Figure 4(d)) that the switching Hme to the unhealthy phase 1094 

occurs, on average, at 188.08 years, with a standard deviaHon of 18.54 years. This indicates 1095 

moderate variability across simulaHons, and the 10th–90th percenHle range (159–207 years) 1096 

shows that most realizaHons fall within this interval. The transiHon to the severe unhealthy 1097 

phase has a mean switching Hme of 201.25 years and a much smaller standard deviaHon (8.14 1098 

years), meaning this threshold is reached within a relaHvely narrow window across 1099 

simulaHons. The 10th–90th percenHles (195–208 years) confirm this Hght clustering. The 1100 

criHcally unhealthy phase occurs at a mean of 215.36 years, with a larger standard deviaHon 1101 

(21.64 years) and a broader 10th–90th percenHle range (198–247 years), reflecHng greater 1102 

dispersion in outcomes. 1103 

 1104 
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 1105 
Figure 4(d). Monte Carlo simulaHons of opHmal paths of groundwater extracHons and water 1106 

table levels under the effecHve Pigouvian tax rate per unit of land sinking (𝛽 = 1,245). 1107 

 1108 

The switching-Hme staHsHcs show that higher tax rates per unit of land sinking systemaHcally 1109 

delay the onset of ecological degradaHon across all three thresholds (Figure 4(e)). For β = 1110 

1245, the transiHon to the unhealthy phase occurs at a mean of 158.02 years (std 18.03), with 1111 

the 10th–90th percenHle range spanning 133–178 years. The severe unhealthy threshold is 1112 

reached at a mean of 200.42 years (std 7.46), with a relaHvely narrow percenHle interval (195–1113 

208 years), indicaHng low variability across simulaHons. The criHcally unhealthy transiHon 1114 

occurs at a mean of 213.59 years, exhibiHng greater dispersion (std 20.08) and a percenHle 1115 

range of 198–247 years. 1116 

 1117 

For the much higher tax level β = 4 Million, all switching Hmes are substanHally delayed. The 1118 

unhealthy-phase transiHon shijs to a mean of 211.29 years (std 13.62, percenHles 191–227), 1119 

indicaHng later onset and reduced uncertainty. The transiHon to the severe unhealthy phase 1120 

occurs at 220.22 years (std 8.10, percenHles 213–231), again showing a Hghtly clustered 1121 

distribuHon. The criHcally unhealthy threshold is reached at a mean of 238.86 years, with a 1122 

larger spread (std 19.84, percenHles 222–271), reflecHng the increasing influence of recharge 1123 

variability at later stages. The case β = 3345 produces the same staHsHcal outcomes as β = 1124 

1245. Taken together, the staHsHcs show that only the largest tax rate (β = 4 Million) 1125 

generates a significant delay in switching Hmes across all phases, whereas moderate tax levels 1126 

(β = 1245 and β = 3345) yield nearly idenHcal outcomes. This demonstrates that substanHal 1127 

tax strength is required to produce meaningful postponement of ecological degradaHon 1128 
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under recharge uncertainty. 1129 

 1130 

 1131 
Figure 4(e). Mean Monte Carlo simulaHons of opHmal paths of groundwater extracHons and 1132 

water table levels under different Pigouvian tax rates per unit of land sinking.   1133 

Note: Red solid line shows the effecHve tax rate per unit of land sinking (𝛽 = 1,245), the black 1134 

solid line shows the increase in the effecHve tax rate (𝛽 = 4	Million), and the green domed 1135 

line shows the empirical tax rates (𝛽 = 3,345).   1136 

 1137 

6.4 LS - GDEs scenario and quotas 1138 

Under the LS-GDEs scenario, groundwater extracHon quotas act as a regulatory tool to control 1139 

LS and safeguard ecosystem health over Hme. When an effecHve quota is applied, water table 1140 

levels are bemer conserved compared to lower quota levels, since very reduced extracHons 1141 

can directly lower crop yields or livestock numbers, leading to lower revenue. Seong the 1142 

quota too high is ineffecHve, as it permits excessive extracHon, causing lower water table 1143 

levels, greater LS, and faster GDEs’ health degradaHon. We observe (Figure 5(a)) that a quota 1144 

of 10	𝑀𝑚³/𝑦𝑒𝑎𝑟 is the effecHve quota level for the Dendron aquifer, consistent with 1145 

Ndahangwapo et al. (2024) findings under the LS scenario alone. These results indicate that 1146 

well-calibrated groundwater quotas are essenHal for miHgaHng aquifer damage and 1147 

promoHng groundwater conservaHon, and policymakers should use localized quota 1148 

thresholds to balance groundwater use with long-term ecological sustainability.   1149 

 1150 

 1151 
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 1152 

 1153 

Figure 5(a). OpHmal paths of groundwater extracHons and water table levels under different 1154 

quota levels.  1155 

Note: Red solid line shows the effecHve quota level (𝑊{ = 10), the black solid line shows the 1156 

increase in the effecHve quota level (𝑊{ = 20), and the green domed line shows the empirical 1157 

quota level (𝑊{ = 14).   1158 

 1159 

Let us recall that the GDEsHS ranges from 0 to 1. From 1 to 0.5, GDEs are in the healthy phase; 1160 

from below 0.5 to 0.35, they are in the unhealthy phase; from below 0.35 to 0.15, they are in 1161 

the severe unhealthy phase; and below 0.15, they are in the criHcally unhealthy phase. We 1162 

observe (Figure 5(b)) that applying the effecHve quota level (𝑊{ = 10) delays the onset of 1163 

both the severe and criHcal unhealthy phases, while maintaining a higher ecosystem health 1164 

status over Hme. The criHcally unhealthy phase is reached in year 158 with 𝑊{ = 10, in year 1165 

105 with 𝑊{ = 14, and in year 65 with 𝑊{ = 20. Furthermore, we observe that the higher the 1166 

quota level, the lower the GDEs’ health level. The onset of cumulaHve LS marks the beginning 1167 

of the severe unhealthy phase (phase 3), where LS starts to occur. Thus, we also observe that 1168 

applying the effecHve quota level delays the onset of cumulaHve LS, and that higher quota 1169 

levels lead to higher levels of cumulaHve LS. 1170 

 1171 

 1172 
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 1173 
Figure 5(b). Ecosystem health status and cumulaHve LS under different quota levels.  1174 

Note: Red solid line shows the effecHve quota level (𝑊{ = 10), the black solid line shows the 1175 

increase in the effecHve quota level (𝑊{ = 20), and the green domed line shows the empirical 1176 

quota level (𝑊{ = 14).   1177 

 1178 

The results demonstrate that stricter and effecHve groundwater quotas (e.g., 𝑊{ = 10) are 1179 

economically efficient in sustaining ecosystem health and delaying costly LS. Higher quota 1180 

levels accelerate ecological decline and increase cumulaHve subsidence, raising long-term 1181 

economic damages. Thus, from a policy perspecHve, effecHve quotas not only safeguard 1182 

GDEs’ health but also reduce future remediaHon costs, making them a welfare-enhancing 1183 

instrument for managing groundwater resources.  1184 

 1185 

 1186 
Figure 5(c). Monte Carlo simulaHons of opHmal paths of groundwater extracHons and water 1187 

table levels under the effecHve quota level (𝑊{ = 10).  1188 

 1189 
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The Monte Carlo results for the quota scenario show (Figure 5(c)) that the water table does 1190 

not approach an equilibrium level within the 600-year simulaHon horizon, nor even within 1191 

2,000 years. Instead, the simulated water table height increases conHnuously, and by the end 1192 

of the plomed period it exceeds the irrigaHon surface level of 1289.5 m a.s.l. This behaviour 1193 

arises because groundwater extracHons are constrained by the imposed quota (10 Mm³ per 1194 

year in this case). Whenever a Monte Carlo draw produces a natural recharge rate that 1195 

exceeds this quota, the model’s equilibrium extracHon level shijs upward. Since the actual 1196 

extracHon remains fixed at the quota, the system removes less water than it receives, causing 1197 

a net accumulaHon of groundwater over Hme. This dynamic explains the persistent upward 1198 

drij in the water-table paths observed in the figure. This occurs for all quota levels considered 1199 

in this paper. 1200 

 1201 

6.5 LS - GDEs scenario and packaging and sequencing of taxes and quotas 1202 

The packaging and sequencing of taxes and quotas provides a refined tool for managing 1203 

groundwater. It helps to limit LS and sustain GDEs’ health over Hme. In the severe unhealthy 1204 

phase (phase 3), all extracHons above the quota are fully taxed. ExtracHons at or below the 1205 

quota remain untaxed. In the criHcal unhealthy phase (phase 4), only quotas are used. Once 1206 

a quota is imposed in phase 3, it remains in place unHl the end of the planning horizon. Firstly, 1207 

we observe (Figure 6(a)) that under all scenarios of packaging and sequencing, extracHons 1208 

always exceeded the quota levels in phase 3. As a result, taxes were applied in phase 3 across 1209 

all tax–quota combinaHons. Quotas, in contrast, were only enforced at the start of phase 4. 1210 

We further observe that, throughout the planning period, the best combinaHon is a high tax 1211 

rate with a low quota level. This combinaHon produces higher water table levels than all other 1212 

tax–quota combinaHons. In the long run, the second best combinaHon is the effecHve tax rate 1213 

and effecHve quota level, followed by the combinaHon of an increase in the effecHve tax rate 1214 

and effecHve quota level. In the short run, the second best combinaHon is the increase in the 1215 

effecHve tax rate and effecHve quota level. We futher observe that ajer quotas are 1216 

implemented (for both tax–quota combinaHons), the water table drops very gradually (from 1217 

𝐻	 = 	1189.5 to the equlibirum level) when both the effecHve tax rate and low quota level 1218 

are applied. This shows that the aquifer is responding to the quota policy, so the water table 1219 

does not fall sharply as it does when a higher qupta level is applied (or the effecHve quota 1220 

level increased). 1221 
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 1222 

 1223 
 1224 

Figure 6(a). OpHmal paths of groundwater extracHons and water table levels when taxes and 1225 

quotas are combined (under different tax rates and quota levels). 1226 

Note: Red solid line shows the effecHve tax rate and effecHve quota (𝛽 = 1245,𝑊{ = 10), the 1227 

black solid line shows the increase in the effecHve tax rate and effecHve quota level (𝛽 =1228 

4	Million,𝑊{ = 20), the green domed line shows a combinaHon of higher tax rate and a low 1229 

quota (𝛽 = 4	Million,𝑊{ = 10), and the light blue domed line shows a combinaHon of low tax 1230 

rate and a higher quota (𝛽 = 1245,𝑊{ = 20). 1231 

 1232 

In addiHon, we observe (Figure 6(b)) that the high-tax–low-quota combinaHon provides the 1233 

highest GDEs’ health over Hme. This combinaHon also best delays the onset of the criHcally 1234 

unhealthy phase. AddiHonally, the same combinaHon results in the lowest cumulaHve LS 1235 

levels over Hme. The results show that combining a high tax rate with a low quota is the most 1236 

effecHve approach for protecHng GDEs and limiHng LS in the Dendron aquifer. Economically, 1237 

this combinaHon aligns farmers’ private incenHves with long-term aquifer sustainability by 1238 

discouraging excessive pumping. Policy-wise, it delays the onset of criHcal ecological stress 1239 

and permanent storage loss, reducing future remediaHon costs. Thus, well-designed tax–1240 

quota policies can simultaneously preserve ecosystem health and maintain groundwater 1241 

resources. 1242 

 1243 
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 1244 
 1245 

Figure 6(b). Ecosystem health status and LS when taxes and quotas are combined (under 1246 

different tax rates and quota levels). 1247 

Note: Red solid line shows the effecHve tax rate and effecHve quota (𝛽 = 1245,𝑊{ = 10), the 1248 

black solid line shows the increase in the effecHve tax rate and effecHve quota level (𝛽 =1249 

4	Million,𝑊{ = 20), the green domed line shows a combinaHon of higher tax rate and a low 1250 

quota (𝛽 = 4	Million,𝑊{ = 10), and the light blue domed line shows a combinaHon of low tax 1251 

rate and a higher quota (𝛽 = 1245,𝑊{ = 20). 1252 

 1253 

 1254 
Figure 6(c). Monte Carlo simulaHons of opHmal paths groundwater extracHons and water 1255 

table levels when the effecHve tax and the effecHve quota level are combined (𝛽 =1256 

1245,𝑊{ = 10). 1257 

 1258 

The same results as in the Monte Carlo results for the quota scenario (Figure 5(c)) occurs here. 1259 

We observe (Figure 6(c)) that the water table does not approach an equilibrium level. This 1260 
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behaviour arises because, in phase 4, groundwater extracHons are constrained by the 1261 

imposed quota level. This behaviour makes Monte Carlo simulaHon unsuitable for the 1262 

comparaHve policy analysis conducted in the remaining secHons of the paper. Those secHons 1263 

require a consistent evaluaHon of all policy instruments under idenHcal hydrological 1264 

condiHons, including the ability to idenHfy equilibrium water-table levels and switching Hmes. 1265 

For this reason, the subsequent secHons of the paper rely solely on determinisHc simulaHons, 1266 

where equilibrium dynamics are well-defined and comparable across all management 1267 

instruments. 1268 

 1269 

6.6 Comparison of several policy instruments and the associated farmers’ welfare 1270 

In this secHon, we compare different policy instruments, Pigouvian taxes, extracHon quotas, 1271 

and the combined approach of packaging and sequencing of taxes and quotas, against the 1272 

baseline scenario and the LS with GDEs scenario without any policy intervenHon. Comparisons 1273 

focus on effecHve tax rates and quota levels, as other values are non-viable. We observe 1274 

(Figure 7(a)) that quotas alone are the most effecHve in reducing extracHons and keeping 1275 

higher water table levels over the planning period. Before 𝑡 = 126, the quota policy is the 1276 

best policy instrument as it outperform all other policy instruments considered by keeping 1277 

higher water table levels. From 𝑡 = 126 to 𝑡 = 201, taxes alone and the packaging and 1278 

sequencing of taxes and quotas are the best instruments. In addiHon, from 𝑡 = 201 to 𝑡 =1279 

285, packaging and sequencing of taxes and quotas outperforms other considered policy 1280 

intruments. Ajer 𝑡 = 285, quotas becomes the best policy instrument by keeping higher 1281 

equilibrium water table levels than all other policy instruments considered. 1282 

 1283 
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 1284 
Figure 7(a). OpHmal paths of groundwater extracHons and water table levels under different 1285 

policy instruments and scenarios (quotas, taxes, packaging and sequencing, LS and no policy 1286 

intervenHons, and the baseline scenario).  1287 

Note: Blue solid line shows the baseline scenario. Green solid line shows the scenario for 1288 

packaging and sequencing. The yellow solid line shows the scenario for LS and no policy 1289 

intervenHons. The red solid line shows the scenario for quotas, and the black solid line shows 1290 

the scenario for taxes. 1291 

 1292 

We futher observe (Figure 7(a)) that some policy instruments may show lower extracHon 1293 

levels when approaching the steady state, but if the aquifer was exploited in the past under 1294 

those policies, water table levels may sHll end up lower at steady state. Thus, the baseline 1295 

scenario performs the worst in conserving groundwater. This outcome reflects the natural 1296 

response Hme of aquifers. Ndahangwapo et al. (2024) explain that aquifers have a natural 1297 

response Hme, meaning it takes Hme for recharge or discharge changes to affect water table 1298 

levels. 1299 

 1300 

From Figure 7(b), we oberve that the same ranking applies to ecosystem health and 1301 

cummulaHve LS outcomes. Quotas help sustain ecosystem health iniHally by limiHng over-1302 

extracHon, but taxes alone and the combined tax-quota approach becomes superior ajer 𝑡 =1303 

126 to 𝑡 = 201, effecHvely minimizing LS and preserving GDEs’ health.  Ajer 𝑡 = 285, quotas 1304 

becomes the best policy instrument by keeping higher GDEs’ health levels than all other policy 1305 

instruments considered. In addiHon, the quota policy results in the lowest levels of 1306 
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cummulaHve LS in the long run. From 𝑡 = 200 to 𝑡 = 300, combining taxes with quotas 1307 

outperforms single instruments, sustaining lower levels of cummulaHve LS. These results 1308 

demonstrate that the quota policy provide a more robust policy instrument, balancing 1309 

economic and ecological objecHves by reducing extracHon pressures, delaying criHcal 1310 

ecosystem stress, and delaying the onset of land subsidence over Hme. The results suggest 1311 

that quotas alone are effecHve in reducing extracHons and maintaining water table levels in 1312 

the long term.  Policies applied ajer heavy aquifer exploitaHon will not fully recover to lower 1313 

levels of cummulaHve LS due to the aquifer’s natural response Hme, emphasizing the need 1314 

for proacHve intervenHon. Overall, the quota policy offer the most robust approach for long-1315 

term groundwater, LS and GDEs’ health management. 1316 

 1317 

 1318 
 1319 

Figure 7(b). Ecosystem health status and LS under different policy instruments and scenarios 1320 

(quotas, taxes, packaging and sequencing, LS and no policy intervenHons, and the baseline 1321 

scenario).  1322 

Note: Blue solid line shows the baseline scenario. Green solid line shows the scenario for 1323 

packaging and sequencing. The yellow solid line shows the scenario for LS and no policy 1324 

intervenHons. The red solid line shows the scenario for quotas, and the black solid line shows 1325 

the scenario for taxes. 1326 

 1327 

The farmers’ private welfare is represented by the private net benefit in the baseline scenario, 1328 

where only the depth externality is considered. We observe (Figure 8) that farmers obtain 1329 

posiHve net benefits under all three policy instruments, meaning that revenues exceed costs 1330 
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across the planning period. Economically, this highlights that policy intervenHons do not 1331 

eliminate profitability but rather redistribute incenHves to balance private gains with 1332 

groundwater sustainability. The baseline scenario delivers the highest profit to farmers 1333 

(0.4032 Million US dollars). Because there are no ecological feedbacks or policy constraints, 1334 

farmers extract aggressively to maximize short-run revenue. There are no penalHes from LS 1335 

or GDEs’ degradaHon, so private profit is maximized. The second-highest welfare occurs under 1336 

the LS–GDEs scenario with no policy intervenHons (0.3415 Million US dollars). In this case, 1337 

farmers sHll face no policy restricHons, but ecological feedbacks (LS and GDEs) reduce the 1338 

effecHve producHvity of pumping by increasing extracHon costs. Profit is therefore lower than 1339 

in the baseline, but sHll relaHvely high because farmers remain unconstrained by regulaHon. 1340 

 1341 

The third-highest welfare arises under taxes alone and under packaging and sequencing of 1342 

taxes and quotas (0.3414 Million US dollars). TaxaHon internalizes part of the ecological 1343 

externality by making extracHon more expensive. Farmers opHmally reduce pumping to avoid 1344 

high extracHon or subsidence costs, leading to slightly lower profit. Packaging/sequencing has 1345 

similar effects, so welfare aligns closely with taxes alone. The lowest welfare is observed 1346 

under the quota policy (0.1395 Million US dollars). Quotas impose a hard cap on extracHon 1347 

regardless of farmers’ willingness to pay and regardless of short-run profitability. This strict 1348 

quanHty constraint severely reduces groundwater use, limiHng crop producHon and yielding 1349 

the lowest farmers’ welfare among all scenarios. 1350 

 1351 

 1352 
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 1353 

Figure 8. Farmers’ private welfare under different policy instruments (taxes, quotas, 1354 

packaging and sequencing, LS and no policy intervenHons scenario, and the private welfare 1355 

(baseline) scenario).   1356 

 1357 

 1358 
Figure 9. Farmer Disaggregated farm profits Hme paths under different scenarios (quotas, 1359 

taxes, packaging and sequencing, LS-GDEs and no policy intervenHons scenario, and the 1360 

private profits (No LS and no policy intervenHons) scenario).  1361 

Note Blue solid line shows the baseline scenario. Green solid line shows the scenario for 1362 

packaging and sequencing. The yellow solid line shows the scenario for LS and no policy 1363 

intervenHons. The red solid line shows the scenario for quotas, and the black solid line shows 1364 

the scenario for taxes  1365 
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 1366 

We observe (Figure 9(a)) that across all scenarios, total economic benefits decline over Hme, 1367 

as rising extracHon costs make it harder for revenues to exceed costs. ExtracHon costs rise as 1368 

the aquifer becomes more depleted and compacHon increases pumping lij, so farm revenues 1369 

increasingly fail to keep pace with rising marginal extracHon costs. In the long run, the 1370 

baseline scenario yields the highest total private economic benefit. Quotas produce the 1371 

lowest farm profit. Binding extracHon caps limit groundwater use regardless of farmers’ 1372 

willingness to pay, reducing crop output and leading to the lowest private economic returns 1373 

among all scenarios. 1374 

 1375 

 1376 
Figure 9(b). A blow-out of of the graph in Figure 9(a) for years t = 0 to 45. 1377 

 1378 

We further observe (Figure 9(b)) that, in the first two years, farmers profit more under the 1379 

Tax scenario, the LS–GDEs and no policy intervenHon scenario, and the packaging-and-1380 

sequencing approach. In early years, the aquifer is sHll relaHvely producHve, and taxes or 1381 

ecological feedbacks do not yet impose sufficiently large extracHon costs. Farmers therefore 1382 

maintain high pumping and enjoy strong short-run profits. 1383 

  1384 

6.7 Sensi#vity analysis (farmers’ welfare) 1385 

To see how policy changes affect farmers’ welfare, we run a sensiHvity analysis on quotas and 1386 

taxes designed to prevent LS, aquifer storage capacity loss, and GDEs’ health deterioraHon. 1387 

Using different values from earlier secHons, we observe (Figure 10) that farmers’ welfare rises 1388 

when the quota is set at 14	𝑀𝑚³ and even more at 20	𝑀𝑚³. However, as shown in Figure 1389 
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5(a), very high quotas like 20	𝑀𝑚³ do not conserve groundwater, even though they raise 1390 

farmer profits. This result highlights an economic trade-off. Higher quotas benefit farmers in 1391 

the short term but damage aquifers and ecosystems in the long run. For policymakers, 1392 

especially in South Africa, the key challenge is to set quota levels that balance private welfare 1393 

with groundwater conservaHon, ensuring sustainable resource use and long-term economic 1394 

efficiency. 1395 

 1396 

 1397 
Figure 10. Farmers' private welfare under different quota levels; the effecHve quota level 1398 

(𝑊{ = 10), the empirical quota level (𝑊{ = 14), and the increase in the effecHve quota level 1399 

(𝑊{ = 20). 1400 

 1401 

A higher Pigouvian tax increases the marginal cost of groundwater extracHon by penalizing LS 1402 

more heavily. We observe (Figure 11) that, as the tax (𝛽) rises, farmers reduce pumping 1403 

earlier and more aggressively to avoid higher tax payments. This reducHon in extracHon 1404 

lowers agricultural output and farm revenues, which outweighs the ecological benefits 1405 

captured in the welfare measure. Consequently, farmers’ welfare falls from 0.3414 Million US 1406 

dollars (𝛽	 = 	1245 US dollars) to 0.3376 Million US dollars (𝛽	 = 	3345 US dollars)  and 1407 

further to 0.3189 Million US dollars (𝛽	 = 	4 Million US dollars), because the tax burden and 1408 

loss in producHon dominate any gains from reduced subsidence. 1409 

 1410 

 1411 
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 1412 
Figure 11. Farmers’ private welfare under different values of the Pigouvian tax per unit of land 1413 

sinking (𝛽); the effecHve tax rate (𝛽 = 1,245), the increase in the Pigouvian tax per unit of 1414 

land sinking (𝛽 = 4	Million), and the empirical tax rate per unit of land sinking (𝛽 = 3,345).   1415 

 1416 

 1417 

 1418 
Figure 12. Farmers’ private welfare when taxes and quotas are combined (under different tax 1419 

rates and quota levels). The effecHve tax rate and effecHve quota level (𝛽 = 1245,𝑊{ = 10), 1420 

the increase in the Pigouvian tax per unit of land sinking (𝛽 = 4	Million,𝑊{ = 10), and the 1421 

increase in the effecHve quota level (𝛽 = 1245,𝑊{ = 20).    1422 

 1423 

We observe (Figure 12) that when taxes and quotas are combined, farmers’ private welfare 1424 

(0.4032 Million US dollars) declines as the Pigouvian tax per unit of land sinking increases. 1425 

Therefore, farmers benefit from this combinaHon only when the Pigouvian tax equals the 1426 
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effecHve tax rate. Economically, this indicates that excessively high Pigouvian taxes lower 1427 

farmers’ welfare without providing extra benefits. From a policy perspecHve, it suggests that 1428 

combining taxes and quotas is most effecHve when the tax is set at the opHmal effecHve rate, 1429 

balancing private welfare with sustainable groundwater use and ecosystem health. 1430 

 1431 

6.8 Social welfare with respect to LS-based externali#es’ costs 1432 

Social welfare is defined as the net benefit once all the negaHve externaliHes from LS are 1433 

included. To measure this effect under different policy seongs, we apply a damage funcHon 1434 

that monetarizes LS impacts, meaning it assigns a social cost to the environmental damages 1435 

caused by LS. The damage funcHon must be wrimen in terms of  the water table changes (𝛥𝐻, 1436 

posiHve when the water table rises, negaHve when it falls). A negaHve change leads to LS, 1437 

while a posiHve change means there is no LS. In our model, we adopt the quadraHc damage 1438 

funcHon from Ndahangwapo et al. (2024): 𝐷(Δ𝐻) = 𝛿 ⋅ Δ𝐻 + f
'
(Δ𝐻)' = /

+,
(𝑅 − (1 −1439 

𝛼)𝑊) + f
'
( )
+,
(𝑅 − (1 − 𝛼)𝑊))', with 𝛿	 > 	0 and 𝜏	 > 	0. Here, 𝛿 and 𝜏 are scaling 1440 

parameters that represent how LS externaliHes grow as 𝛥𝐻 become larger. When the change 1441 

in water table is posiHve, the monetarized environmental damage Δ𝐻 + f
'
(Δ𝐻)' is also 1442 

posiHve. When the change is negaHve, the outcome depends on the relaHve size of 𝛿 and 𝜏. 1443 

Specifically, 𝛿 must be substanHally larger than 𝜏 for 𝛿 > f
'
Δ𝐻 to hold. The social benefits 1444 

during the four phases of the GDEs’ health are then given by the modified equaHon below. 1445 
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'
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∗
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 1448 

Once calibrated, we found through simulaHon that social welfare is always lower than private 1449 

welfare, with 𝛿	 = 	3	𝑀𝑖𝑙𝑙𝑖𝑜𝑛 and 𝜏	 = 	0.00000002. The results (Figure 13) show that as the 1450 

effecHve tax rate per unit of land sinking rises, social welfare falls significantly below private 1451 

welfare. This indicates that a higher tax amplifies the social costs associated with LS 1452 

externaliHes faced by farmers. This finding suggests that tax instruments need careful 1453 

calibraHon. Excessively high tax rates may discourage efficient groundwater use without 1454 

necessarily improving welfare, as they increase the burden on farmers while amplifying 1455 

measured social costs. Policymakers should therefore balance tax rates to internalize 1456 
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externaliHes while sHll maintaining incenHves for sustainable extracHon. 1457 

 1458 

 1459 
Figure 13. Private welfare (No LS, GDEs and no policy intervenHons), and social welfare under 1460 

different values of the Pigouvian tax per unit of land sinking (𝛽) and the constant (Ω) 1461 

represenHng the impact of groundwater extracHon on the aquifer system's storage capacity; 1462 

the effecHve tax rate per unit of land sinking and the effecHve constant (Ω)  (𝛽 = 1,245, Ω =1463 

0.4, 𝛿 = 5	𝑀𝑖𝑙𝑙𝑖𝑜𝑛 and 𝜏 =0.00000004), the increase in the effecHve tax rate per unit of land 1464 

sinking  (𝛽 = 4	𝑀𝑖𝑙𝑙𝑖𝑜𝑛, Ω = 0.4, 𝛿 = 5	𝑀𝑖𝑙𝑙𝑖𝑜𝑛 and 𝜏 =0.00000004), and the effecHve tax 1465 

rate per unit of land sinking and the increase in the constant (Ω)  (𝛽 = 1,245, Ω = 0.49, 𝛿 =1466 

5	𝑀𝑖𝑙𝑙𝑖𝑜𝑛 and 𝜏 =0.00000004). 1467 

 1468 

When the effecHve constant (𝛺), which represents the impact of groundwater extracHon on 1469 

the aquifer system’s storage capacity increases, social welfare reduces by 0.0001 Million US 1470 

dollars (from 0.3406 Million US dollars to 0.3405 Million US dollars) (Figure 13). A higher value 1471 

of 𝛺 implies a smaller LS – impact on aquifer storage capacity. Therefore, the more the storage 1472 

capacity is not affected by LS, societal welfare reduces slightly. When LS has limle effect on 1473 

aquifer storage capacity (large Ω), extracHon remains relaHvely cheap because subsidence 1474 

does not significantly reduce the aquifer’s ability to store and transmit water. Farmers 1475 

therefore extract more groundwater, generaHng higher cumulaHve LS and greater long-term 1476 

ecological damage to GDEs. Although short-term extracHon profits may rise slightly, the 1477 

increased ecological degradaHon reduces total social welfare, leading to a small overall 1478 

decline in welfare when the aquifer is less sensiHve to subsidence like the Dendron aquifer. 1479 
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 1480 

 1481 

 1482 
Figure 14. Private welfare (No LS, GDEs and no policy intervenHons), and social welfare under 1483 

different quota levels; the effecHve quota level (𝑊{ = 10, 𝛿 = 5	𝑀𝑖𝑙𝑙𝑖𝑜𝑛 and 𝜏 =0.00000004), 1484 

and the increase in the effecHve quota level (𝑊{ = 20, 𝛿 = 5	𝑀𝑖𝑙𝑙𝑖𝑜𝑛 and 𝜏 =0.00000004). 1485 

 1486 

For the quota policy, we observe (Figure 14) that social welfare increases by 0.1336	𝑀𝑖𝑙𝑙𝑖𝑜𝑛 1487 

USD, rising from 0.1395	𝑀𝑖𝑙𝑙𝑖𝑜𝑛 USD to 0.2731	𝑀𝑖𝑙𝑙𝑖𝑜𝑛 US dollars, when the effecHve quota 1488 

level is raised. This improvement occurs because the addiHonal water allocaHon is directed 1489 

toward higher-value agricultural uses, which enhances overall producHvity. These results 1490 

highlight that well-calibrated quota adjustments can generate significant welfare gains by 1491 

ensuring that scarce groundwater is allocated more efficiently. In addiHon, a balanced 1492 

approach, linking quota levels to aquifer and GDEs’ health indicators or coupling them with 1493 

incenHves for adopHng water-efficient farming technologies could maximize welfare while 1494 

maintaining sustainability. 1495 

 1496 

 1497 
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 1498 
Figure 15. Social welfare when taxes and quotas are combined (under different tax rates and 1499 

quota levels). The effecHve tax rate and effecHve quota level (𝛽 = 1245,𝑊{ = 10, 𝛿 =1500 

5	𝑀𝑖𝑙𝑙𝑖𝑜𝑛 and 𝜏 =0.00000004), the increase in the Pigouvian tax per unit of land sinking (𝛽 =1501 

4	Million,𝑊{ = 10, 𝛿 = 5	𝑀𝑖𝑙𝑙𝑖𝑜𝑛 and 𝜏 =0.00000004), and the increase in the effecHve 1502 

quota level (𝛽 = 1245,𝑊{ = 20, 𝛿 = 5	𝑀𝑖𝑙𝑙𝑖𝑜𝑛 and 𝜏 =0.00000004).    1503 

 1504 

For packaging and sequencing of taxes and quotas, we observe (Figure 15) that when taxes 1505 

and quotas are combined, social welfare ( from 0.3406	𝑀𝑖𝑙𝑙𝑖𝑜𝑛 US dollars to 0.3183	𝑀𝑖𝑙𝑙𝑖𝑜𝑛 1506 

US dollars) decreases as the Pigouvian tax per unit of land sinking increases. This decline 1507 

indicates that the interacHon between the quota constraint and rising Pigouvian taxes 1508 

generates addiHonal economic inefficiencies, reducing overall welfare instead of improving it. 1509 

These results suggest that layering taxes on top of quotas without proper calibraHon can 1510 

undermine social welfare, as the two policies may overlap in their correcHve funcHon. 1511 

Policymakers should therefore carefully evaluate whether combining instruments is 1512 

necessary. In contexts where quotas already constrain water extracHon effecHvely, addiHonal 1513 

Pigouvian taxaHon may not only be redundant but also welfare-reducing. 1514 

 1515 

7. Extension of the model (change of the threshold #pping points) 1516 

A key element of our groundwater-GDEs modeling framework lies in the specificaHon of the 1517 

criHcal thresholds for ecosystem health (𝛿, 𝜌, 𝛾) and for the water table height (𝐻!, 𝐻", 𝐻#). 1518 

These criHcal thresholds determine the Hming of phase transiHons in the aquifer–ecosystem 1519 

system and, consequently, shape the dynamics of groundwater extracHon, LS, and ecosystem 1520 
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health outcomes. However, these parameters are inherently uncertain, both empirically and 1521 

ecologically, as they depend on site-specific hydrological condiHons, ecosystem resilience, 1522 

and the socio-economic valuaHon of ecosystem services. ConducHng sensiHvity analysis is 1523 

therefore essenHal to assess the robustness of our results. By varying the criHcal thresholds 1524 

around their empirical baseline values, we can evaluate how shijs in ecosystem resilience 1525 

(health Hpping points) and hydrological stress points (water table thresholds) alter the Hming 1526 

of regime shijs, the path of extracHons, aquifer depleHon, and ulHmately the evoluHon of 1527 

GDEs’ health. 1528 

 1529 

7.1 sensi#vity analysis of the cri#cal thresholds 1530 

In general, we expect that increasing the values of the GDEs’ health thresholds, i.e., assuming 1531 

ecosystems are more fragile, will lead to earlier onset of unhealthy, severe unhealthy, and 1532 

criHcal unhealthy phases, reducing the Hme horizon for sustainable groundwater use. 1533 

Conversely, lowering these thresholds, implying greater resilience, should prolong the healthy 1534 

phase, delay transiHons, and sustain higher levels of social welfare over Hme. Similarly, higher 1535 

values of the water table thresholds are expected to accelerate compacHon processes and 1536 

health deterioraHon, whereas lower thresholds should delay these transiHons and moderate 1537 

the severity of ecosystem stress. Overall, this sensiHvity analysis allows us to test the stability 1538 

and robustness of our opHmal paths’ results, highlight the importance of ecological resilience 1539 

for groundwater policy design, and idenHfy which parameters exert the strongest influence 1540 

on long-run aquifer-ecosystem sustainability. 1541 

 1542 

For the sensiHvity analysis, we only use the effecHve quota level, effecHve tax rate, and the 1543 

empirical constant (Ω = 0.4). We set a short horizon of 250 years to esHmate aquifer 1544 

depleHon. This longer horizon is more useful for policymakers to understand differences 1545 

between scenarios (Esteban et al., 2021). Our policy instruments, tax, packaging and 1546 

sequencing, and the LS-GDEs and no policy intervenHon, show similar water table and 1547 

extracHon levels within the 20-year period used by Esteban et al. (2021), necessitaHng our 1548 

extended horizon.  1549 

 1550 

7.1.1 Scenario with Land Subsidence, GDEs, and No Policy Interven#on 1551 

Table 2 (in Appendix 19) shows how varying the GDEs’ health thresholds and water-table 1552 
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thresholds affects the opHmal outcomes under the LS–GDEs–no-policy scenario. Under the 1553 

empirical thresholds (δ = 0.5, ρ = 0.35, γ = 0.15; 𝐻! = 1200.5, 𝐻"  = 1191.5, 𝐻#  = 1189.5), the 1554 

equilibrium water table height is 1177.53 m.a.s.l, aquifer depleHon is 164.8 Mm³, and total 1555 

social welfare is 0.3415 Million US dollars. Lowering the GDEs’ health thresholds (δ = 0.4, ρ = 1556 

0.3, γ = 0.1) yields a slightly higher water table (1177.65 m.a.s.l), slightly lower depleHon (164 1557 

Mm³), and a small welfare gain (0.3419 Million US dollars), while delaying the severe and the 1558 

criHcally unhealthy phases because more resilient ecosystems tolerate drawdown for longer. 1559 

Raising the health thresholds (δ = 0.7, ρ = 0.4, γ = 0.2) produces a marginally lower water table 1560 

(1177.4 m.a.s.l), higher depleHon (165.68 Mm³), and slightly lower welfare (0.3414 Million US 1561 

dollars), with earlier switching Hme for the criHcally unhealthy phase, and delayed unhealthy 1562 

phase. Lowering the water-table thresholds (H_u = 1195.5, H_c = 1190.5, H_T = 1184.5) raises 1563 

welfare to 0.3482 Million US dollars and reduces depleHon to 162.3 Mm³, with delayed 1564 

unhealthy phase and the criHcally unhealthy phase, as well as an early severe unhealthy 1565 

phase. Conversely, raising the thresholds (𝐻! = 1205.5, 𝐻"  = 1196.5, 𝐻#  = 1192.5) yields the 1566 

lowest welfare (0.3349 Million US dollars) and the lowest depleHon (150.64 Mm³), with 1567 

delayed transiHons into the GDEs’ health phases. 1568 

 1569 

 1570 

7.1.2 LS - GDEs Scenario with Taxes 1571 

Table 3 (in Appendix 19) shows tah the empirical criHcal thresholds (δ = 0.5, ρ = 0.35, γ = 0.15; 1572 

𝐻! = 1200.5, 𝐻"  = 1191.5, 𝐻#  = 1189.5) yield an equilibrium water-table height of 1179.10 1573 

m.a.s.l, aquifer depleHon of 158 Mm³, and social welfare of 0.3414 Million US dollars. 1574 

Lowering the GDEs’ health thresholds (δ = 0.4, ρ = 0.3, γ = 0.1) produces nearly idenHcal 1575 

outcomes, 1179.04 m.a.s.l, 159 Mm³, and 0.3415 Million US dollars. The switching Hmes shij 1576 

only minimally, indicaHng that under a tax regime ecological resilience has very small leverage 1577 

over long-run hydrology or welfare. Raising the health thresholds (δ = 0.7, ρ = 0.4, γ = 0.2) 1578 

similarly produces only slight changes, 1178 m.a.s.l, 160 Mm³, and 0.3413 Million US dollars, 1579 

with switching Hmes again showing negligible movement. AdjusHng the water-table 1580 

thresholds yields somewhat more visible effects: lowering them (𝐻! = 1195.5, 𝐻"  = 1190.5, 1581 

𝐻#  = 1184.5) increases welfare to 0.3477 Million US dollars and yields 160 Mm³ depleHon, 1582 

while raising them (𝐻! = 1205.5, 𝐻"  = 1196.5, 𝐻#  = 1192.5) lowers welfare to 0.3347 Million 1583 

US dollars and reduces depleHon to 146 Mm³. Across all cases, the switching Hmes change 1584 
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only marginally, confirming that Pigouvian taxes dominate the Hming of transiHons, and 1585 

adjusHng the ecological thresholds produces small, second-order variaHons. Economically, 1586 

the tax internalises subsidence damage so strongly that the system’s opHmal path is governed 1587 

primarily by the tax rate itself; changes in ecological fragility only slightly perturb the Hming 1588 

of transiHons and long-run welfare. 1589 

 1590 

 1591 

7.1.3 LS - GDEs scenario and quotas 1592 

Table 4 (in Appendix 19) shows that under the quota policy, the imposed extracHon cap 1593 

dominates system behaviour, resulHng in almost idenHcal long-run hydrological and 1594 

economic outcomes across all sensiHvity cases. With the empirical thresholds (δ = 0.5; Hᵤ = 1595 

1200.5), the equilibrium water table height is 1186.47 m.a.s.l, aquifer depleHon is 150.8 Mm³, 1596 

and total welfare is 0.1395 Million US dollars. The switching Hmes are tᵤ = 126, 𝑡"  = 155, and 1597 

𝑡#  = 161.  1598 

 1599 

It is worth menHoning that the opHmal soluHons only contains δ and 𝐻!, and not other criHcal 1600 

thresholds. Lowering the GDE health thresholds (δ = 0.4) does not change any opHmal 1601 

outcomes: the equilibrium water table remains 1186.47 m.a.s.l, depleHon remains 150.7 1602 

𝑀𝑚³, welfare stays at 0.1395 Million US dollars, and all switching Hmes shij only slightly to 1603 

tᵤ = 126, 𝑡"  = 144, ans 𝑡#  = 161. This occurs because δ affects only the ecological penalty term 1604 

in phase 1, but the quota binds extracHon so Hghtly that behaviour cannot adjust in response. 1605 

Raising the GDE health thresholds (δ = 0.7) also produces idenHcal hydrological and economic 1606 

outcomes, equilibrium water table 1186.47 m.a.s.l, depleHon 150.7 Mm³, welfare 0.1395 1607 

Million US dollars, with almost unchanged switching Hmes (126, 145, 163). Since the quota 1608 

fixes total pumping throughout, farmers cannot respond to ecosystem fragility by reducing 1609 

extracHon; thus only the Hming of ecological transiHons shijs slightly. The water-table 1610 

threshold cases show the same rigidity. Lowering the water table thresholds (Hᵤ = 1195.5) 1611 

leaves the equilibrium water table (1186.47 m.a.s.l) and welfare (0.1395 Million US dollars) 1612 

unchanged, with switching Hmes moving to tᵤ = 132, 𝑡"   = 151, while 𝑡#   is not reported 1613 

(because the quota-driven trajectory never reaches inelasHc compacHon). Raising the 1614 

thresholds (Hᵤ = 1205.5 m.a.s.l) yields a nearly idenHcal equilibrium (1186.5 m.a.s.l), depleHon 1615 

(150.7 𝑀𝑚³), and welfare (0.1395 Million US dollars), with earlier transiHons (tᵤ = 119, 𝑡"   = 1616 



66 
 

131, 𝑡#   = 136) because the system crosses the higher thresholds sooner. 1617 

 1618 

 1619 

7.1.4 LS - GDEs scenario and packaging and sequencing of taxes and quotas 1620 

Table 5 (in Appendix 19) shows that, with the empirical thresholds (δ = 0.5, ρ = 0.35, γ = 0.15; 1621 

𝐻! = 1200.5, 𝐻"  = 1191.5, 𝐻#  = 1189.5), imposing the quota only in phase 4 produces a much 1622 

higher equilibrium water table (1184.8 m.a.s.l), lower depleHon (144.6 Mm³), and lower 1623 

welfare (0.3414 Million US dollars). Varying the GDEs’ health thresholds has only small 1624 

changes from the lone tax policy results because the quota policy in phase 4 depends only on 1625 

γ. Lowering the thresholds (δ = 0.4, ρ = 0.3, γ = 0.1) keeps the equilibrium water table (1184.8 1626 

m.a.s.l) and depleHon (144.6 Mm³) almost unchanged and slightly increases welfare to 0.3415 1627 

Million US dollars. The switching Hmes also shij only marginally: the unhealthy phase occurs 1628 

earlier, and the severe unhealthy phases occur slightly later.  1629 

Raising the GDEs’ health thresholds (δ = 0.7, ρ = 0.4, γ = 0.2), making ecosystems more fragile, 1630 

produces almost no change in the equilibrium water table (1184.7 m.a.s.l), slightly increases 1631 

depleHon (145 Mm³), and reduces welfare slightly to 0.3413 Million US dollars. Here, the 1632 

switching Hmes adjust modestly in the opposite direcHon: the severe unhealthy and criHcally 1633 

unhealthy phases begin slightly earlier. Changing the water-table thresholds has clearer 1634 

effects because these thresholds determine when compacHon begins and, crucially, when the 1635 

phase-4 quota is acHvated. Lowering the thresholds (𝐻! = 1195.5, 𝐻"  = 1190.5, 𝐻#  = 1184.5) 1636 

brings earlier the onset of elasHc compacHon and delays inelasHc compacHon. As a result, 1637 

farmers can pump more before entering phase 4, causing depleHon to rise to 160 Mm³ and 1638 

welfare to increase to 0.3477 Million US dollars, while the equilibrium water table declines 1639 

slightly to 1182.53 m.a.s.l. Conversely, raising the thresholds (𝐻! = 1205.5, 𝐻"  = 1196.5, 𝐻#  = 1640 

1192.5) makes the aquifer more fragile to compacHon and triggers the unhealthy phase 1641 

earlier. The severe unhealthy and the criHcally unhealthy phases are delayed. As a result, 1642 

depleHon falls sharply to 132 Mm³, welfare decreases to 0.3347 Million USD, and the 1643 

equilibrium water table becomes higher (1187.8 m.a.s.l).     1644 

 1645 

8 Conclusion and Policy Implica#ons 1646 

This study assessed the performance of Pigouvian taxes, extracHon quotas, and the packaging 1647 
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and sequencing of taxes and quotas in managing land subsidence (LS) and sustaining 1648 

groundwater-dependent ecosystems (GDEs) in the Dendron aquifer under a unified LS–GDEs 1649 

framework. The results reveal clear and policy-relevant trade-offs between private welfare, 1650 

social welfare, aquifer depleHon, and ecosystem health. Across all scenarios, the baseline (no 1651 

LS and no GDE feedbacks) generates the highest private welfare but also the lowest long-run 1652 

water table levels and the greatest aquifer depleHon, confirming that unregulated pumping 1653 

is incompaHble with long-term hydrological and ecological sustainability. 1654 

 1655 

Quotas, applied throughout the horizon, remain the most effecHve instrument for 1656 

maintaining higher water table levels and substanHally reducing aquifer depleHon, although 1657 

they impose the largest private welfare losses relaHve to alternaHve policies. Taxes alone 1658 

generate higher short-run private benefits but do not reduce extracHons sufficiently to 1659 

prevent long-run declines in the water table. The analysis shows that Pigouvian taxes 1660 

internalise LS damages, but large tax increases depress both private and social welfare 1661 

without corresponding ecological gains. 1662 

 1663 

The packaging and sequencing of taxes and quotas with Pigouvian taxes in phases 1–3 and 1664 

quotas only in phase 4, consistently emerges as the most balanced policy opHon. This 1665 

combined approach delivers higher welfare than quotas alone, prevents the sharp long-run 1666 

declines observed under taxes alone, and yields intermediate extracHon and water-table 1667 

paths that stabilise earlier than in the single-instrument cases. Importantly, because the 1668 

quota binds only in phase 4, welfare losses are moderated while long-run groundwater 1669 

protecHon is preserved. The switching-Hme pamerns observed in the sensiHvity analysis 1670 

qualify and refine the policy comparison rather than overturning it. Changes in the GDEs’ 1671 

health thresholds and water-table thresholds shij the Hming of entry into the unhealthy, 1672 

severe-unhealthy, and criHcal phases in non-linear ways, but the combined tax–quota policy 1673 

conHnues to deliver balanced extracHon and water-table paths and to prevent persistent, 1674 

deep declines in groundwater levels. In parHcular, the phase-4 quota consistently acts as a 1675 

hard cap on extracHons once the system enters the criHcal unhealthy phase, even when 1676 

ecological and hydrological thresholds are perturbed. 1677 

 1678 

The sensiHvity analysis of the GDEs’ health thresholds (δ, ρ, γ) and the water-table thresholds 1679 
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(𝐻!, 𝐻", 𝐻#) further shows that relaHvely small changes in these criHcal values can generate 1680 

noHceable shijs in long-run welfare, and aquifer depleHon. Depending on the parameter 1681 

configuraHon, transiHons into stressed phases can be brought forward or pushed back, and 1682 

welfare can rise or fall, underscoring the importance of ecological resilience and aquifer 1683 

morphology in shaping opHmal policy design. Across all scenarios and parameter variants, 1684 

equilibrium social welfare remains systemaHcally lower than private welfare because LS–GDE 1685 

damages impose external costs not internalised by individual farmers, reinforcing the case for 1686 

regulatory intervenHon through taxes, quotas, or their combinaHon.  1687 

 1688 

Taken together, the results demonstrate that no single policy dominates across all metrics, 1689 

but integrated and adapHve approaches, parHcularly the packaging and sequencing of taxes 1690 

and quotas—offer the strongest long-term protecHon against aquifer depleHon, LS, and GDE 1691 

degradaHon while maintaining reasonable welfare outcomes. For South African groundwater 1692 

governance, these findings emphasise the importance of calibraHng Pigouvian taxes at 1693 

effecHve levels, seong quotas within sustainable bounds, and coordinaHng instruments 1694 

across ecological phases. Such targeted and combined policies provide the most sustainable 1695 

and welfare-preserving pathway for managing the Dendron aquifer and similar groundwater 1696 

systems facing coupled hydrological–ecological risks. 1697 

  1698 
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Appendix 1710 

 1711 
Appendix 1. Construc#on of the GDEs’ health status (GDEsHS) func#on 1712 

 1713 

The health of GDEs depends on one key groundwater amribute, among others: depth to the 1714 

water table (Clijon and Evans, 2001). Depth to the water table is quanHfied as the difference 1715 

between the elevaHon of the irrigated field surface and the height of the water table, 𝑆* − 𝐻. 1716 

Several papers have defined ecosystem health as a funcHon of the depth to the water table 1717 

(Esteban et al., 2021; Esteban and Dinar, 2016). The higher the depth to the water table, the 1718 

lower the health level of the GDEs. AlternaHvely, GDEs health can be expressed as a funcHon 1719 

of the water table height (Esteban et al., 2021). In this study, we examine GDEs health as a 1720 

funcHon of water table height, where a decline in water table height corresponds to a decline 1721 

in ecosystem health. We assume the aquifer is at full capacity when the water table height 1722 

equals the surface elevaHon, that is, 𝑆* = 𝐻 (Esteban et al., 2021). IntuiHvely, a full aquifer 1723 

implies that the GDEs’ health is in its prisHne (unaltered or undisturbed) state. Building on the 1724 

framework proposed by Esteban et al. (2021), we define GDEs’ health as occurring in four 1725 

disHnct phases. Phase 1 is the healthy phase, during which GDEs are fully funcHonal, and all 1726 

ecological and hydrological processes are funcHoning in a stable, undisturbed, and 1727 

ecologically ideal state, supporHng long-term sustainability without intervenHon. Ecological 1728 

processes are the natural interacHons and funcHons that sustain ecosystems and the 1729 

organisms within them. Phase 2, the unhealthy phase, reflects a state where some ecological 1730 

processes are not efficient or disrupted. In Phase 3, the severe unhealthy phase, GDEs 1731 

experience major or severe funcHonal impairment, with key or essenHal ecological processes 1732 

significantly compromised. Finally, Phase 4, the criHcal unhealthy phase, represents a state in 1733 

which essenHal ecological processes have largely ceased or criHcally impaired, indicaHng that 1734 

the GDE is on the verge of complete failure. The GDEs’ health status (GDEsHS) funcHonal 1735 

represents the condiHon or level of health of GDEs. 1736 

 1737 

We have four parameters that define the GDEsHS funcHonal throughout the aforemenHoned 1738 

four phases, 0 < 𝛾 < 𝜌 < 𝛿 < 1. We define the health level 1 as the prisHne state of the 1739 

GDEs, corresponding to their condiHon when the aquifer is full (Esteban et al., 2021). Between 1740 

1 and 𝛿, the GDEs are relaHvely healthy (healthy phase). The parameter 𝛿 represents the 1741 
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GDEs’ health criHcal threshold (or Hpping point) beyond which the GDEs’ health switches to 1742 

the unhealthy phase. Between 𝛿 and 𝜌, the GDEs are unhealthy (unhealthy phase), during 1743 

which a decreasing water table height caused by groundwater extracHon is the sole driver of 1744 

GDEs’ health stress. 1745 

 1746 

The parameter 𝜌 represents the GDEs’ health criHcal threshold beyond which the GDEs’ 1747 

health switches to the severe unhealthy phase, where land subsidence is occurring due to 1748 

elasHc compacHon. Between 𝜌 and 𝛾, the GDEs are severely unhealthy (severe unhealthy 1749 

phase), during which a decreasing water table height coupled with LS (elasHc compacHon), 1750 

both caused by groundwater extracHon, simultaneously drive GDEs’ health stress. 1751 

 1752 

The parameter 𝛾 represents the GDEs’ health criHcal threshold beyond which the GDEs’ 1753 

health switches to the criHcal unhealthy phase, where land subsidence is occurring due to 1754 

both elasHc and inelasHc compacHon. Between 𝛾 and zero, the GDEs are criHcally unhealthy 1755 

(criHcal unhealthy phase), during which a decreasing water table height, coupled with LS (both 1756 

elasHc and inelasHc compacHon) and aquifer system storage capacity loss, all caused by 1757 

groundwater extracHon, simultaneously drive the GDEs’ health stress. We assume that the 1758 

GDEs’ health level must drop to zero when the aquifer is fully depleted (𝐻 = 𝐻.), regardless 1759 

of the level of LS experienced at that point in Hme 𝑡. That is, GDEs exHnguish when the water 1760 

table height is equal to the bomom (𝐻.) of the aquifer. Following Esteban et al. (2021), we 1761 

further assume that at each criHcal threshold, the GDEs health status funcHonal is conHnuous, 1762 

taking the same value from both the lej and right sides of the funcHon. 1763 

 1764 

 In addiHon, we have three criHcal thresholds for the water table height that define the 1765 

GDEsHS funcHonal throughout the aforemenHoned four phases: 𝐻# < 𝐻" < 𝐻!. The water 1766 

table height 𝐻! represents the criHcal threshold for the water table height beyond which the 1767 

GDEs’ health switches to the unhealthy phase. Between 𝐻! and 𝐻", decreasing water table 1768 

height, which is caused by groundwater extracHon, is the sole driver of GDEs’ health stress. 1769 

The water table height 𝐻"  represents the criHcal threshold for the water table height beyond 1770 

which the elasHc compacHon phase begins. That is, land subsidence caused solely by elasHc 1771 

compacHon begins when 𝐻"  is surpassed. Between 𝐻"  and 𝐻#, the GDEs’ health stress is 1772 

simultaneously driven by decreasing water table height and land subsidence caused by elasHc 1773 
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compacHon. The water table height 𝐻#  represents the criHcal threshold for the water table 1774 

height beyond which the inelasHc compacHon phase begins. Below 𝐻#, the GDEs’ health 1775 

stress is simultaneously driven by decreasing water table height, land subsidence caused by 1776 

both elasHc and inelasHc compacHon, as well as aquifer system storage capacity loss. The 1777 

water table height 𝐻. represents the bomom of the aquifer. As a results, we define the GDEs 1778 

health status funcHonal for the healthy phase (phase 1) as suggested by Esteban et al. (2021) 1779 

as follows below.  1780 

 𝐺𝐷𝐸𝑠𝐻𝑆(𝐻) = /0)
(,"02#)!

⋅ (𝑆* − 𝐻)' + 1,					𝐻 ≥ 𝐻!. (60) 1781 

Since 𝛿 < 1, then 𝛿 − 1 < 0, and we observe that the denominator in the expression is also 1782 

strictly greater than zero since 𝑆* > 𝐻!. Therefore, the GDEs’ health status is a negaHve 1783 

quadraHc in 𝐻. The above funcHon is a downward opening parabola, decreasing gradually as 1784 

the water table height decreases. When the water table height is equal to 𝑆*  (no water stress 1785 

as the aquifer is full), the GDEs’ health is in its prisHne state with a health level equal to 1. As 1786 

𝐻 reduces, the GDEs’ health status decreases quadraHcally from 1 towards 𝛿. When the water 1787 

table height reaches 𝐻!, the GDEs’ health state is equal to 𝛿. We define the GDEs health status 1788 

funcHonal for the unhealthy phase (phase 2) as follows below.  1789 

 𝐺𝐷𝐸𝑠𝐻𝑆(𝐻) = /04
(2#02$)!

⋅ (𝑆* − 𝐻" − (𝑆* − 𝐻))' + 𝜌 1790 

 	= /04
(2#02$)!

⋅ (𝐻 − 𝐻")' + 𝜌,					𝐻" ≤ 𝐻 < 𝐻!. (61) 1791 

Since 𝛿 > 𝜌, then 𝛿 − 𝜌 > 0, and we observe that the denominator in the expression is also 1792 

strictly greater than zero since 𝐻! > 𝐻". Therefore, the GDEs’ health status is a posiHve 1793 

quadraHc in 𝐻. The funcHon decreases as the water table height decreases. The GDEs’ health 1794 

status decreases from 𝛿 towards 𝜌 as 𝐻 reduces. When the water table height is equal to 𝐻!, 1795 

the GDEs’ health level is equal to 𝛿. When the water table height is equal to 𝐻", the GDEs’ 1796 

health state is equal to 𝜌. 1797 

 1798 

The GDEs’ health status funcHonals for both phase 1 and phase 2 are not affected by LS. The 1799 

depth to the water table used to construct their health funcHonals is defined by: Depth =1800 

𝑆* − 𝐻, where 𝑆*  is the irrigaHon surface elevaHon, and 𝐻 is the water table height. In phase 1801 

3 and phase 4, GDEs’ health stress is simultaneously driven by a decreasing water table height 1802 

and LS. When LS occurs, the ground surface physically lowers. That is, the value of 𝑆*  changes 1803 
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(decreases) as LS progresses. Therefore, if 𝑆*  is dynamically updated to reflect the current 1804 

ground surface elevaHon (i.e., to include the effect of LS), the effecHve depth to the water 1805 

table at any Hme is given as follows below.  1806 

 Depth = 𝑆* − 𝐿𝑆(𝐻) − 𝐻. (62) 1807 

This formulaHon reflects that even if 𝐻9 remains constant, an increase in 𝐿𝑆(𝐻) results in a 1808 

larger effecHve depth, which imposes stress on GDEs. The funcHon 𝐿𝑆(𝐻) represents the 1809 

cumulaHve LS (in meters) that has occurred since surpassing the criHcal threshold 𝐻"  up to 1810 

and including Hme 𝑡.   1811 

 𝐿𝑆(𝐻) = −𝜂 ⋅ 𝜀 ⋅ 𝑏 ⋅ 𝜓 ⋅ (𝐻 − 𝐻"), 𝐻 < 𝐻" . (63) 1812 

Where 𝐻, 𝜂, 𝑏, 𝜓, and 𝜀 represent the water table height at Hme 𝑡, the density of water, the 1813 

aquifer system’s thickness, the aquifer system compressibility, and the acceleraHon due to 1814 

gravity. As 𝐻 decreases, 𝐻 − 𝐻" < 0 and 𝐿𝑆(𝐻) > 0, which reflects a posiHve cumulaHve LS. 1815 

Subsidence begins only once the 𝐻"  is surpassed and increases as 𝐻 falls farther below 𝐻". 1816 

Take note that the cumulaHve LS is always greater than or equal to zero. If 𝐿𝑆(𝐻) = 0, it 1817 

means that there is no cumulaHve LS from the onset of compacHon (i.e., from when 𝐻 first 1818 

dropped below 𝐻") up to the current Hme 𝑡. Either previously induced land sinking has been 1819 

completely offset by land uplij, or the land surface elevaHon has returned to its original (pre-1820 

compacHon) level, i.e., the elevaHon at the Hme 𝐻 was equal to 𝐻". The lamer can only happen 1821 

if all the compacHon was elasHc (i.e., reversible), and the water table has recovered back to 1822 

𝐻"  or higher. Even if water returns to pre-extracHon levels, it is difficult to fully recover 1823 

previously induced land sinking in most aquifers. In some regions, even when groundwater 1824 

levels rise, the land surface does not immediately rebound, but conHnues to subside (Wang 1825 

et al., 2013; Zhang et al., 2013). Even if groundwater returns to pre-extracHon levels, the uplij 1826 

is usually small and does not fully reverse the previous LS (Zhang et al., 2012; 2015a). This 1827 

delayed response of land uplij relaHve to water table recovery is influenced by the geological 1828 

properHes of the soil and aquifer system (Jin et al., 2014). If any inelasHc compacHon has 1829 

occurred, 𝐿𝑆(𝐻) = 0 is no longer physically possible. If 𝐿𝑆(𝐻) < 0, the land uplijed beyond 1830 

its original elevaHon because 𝐿𝑆(𝐻) moved from being equal to zero (when all the cumulaHve 1831 

land sinking experienced in the past were offset to no land sinking occurred before) to 1832 

negaHve, which is not physically realisHc in most real-world aquifer systems (Wang et al., 1833 

2013; Zhang et al., 2013). Therefore, the maximum amount of 𝐿𝑆(𝐻) the aquifer system can 1834 

experience is less than or equal to 𝐻" − 𝐻 at any Hme Hme step. Land compacHon is caused 1835 
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by a reducHon in 𝐻. Even if delayed compacHon occurs, it sHll originates from past drops in 1836 

𝐻, not independently. 1837 

 1838 

In phase 3 (the severe unhealthy phase), GDEs’ health stress is simultaneously driven by a 1839 

decreasing water table height and LS caused by elasHc compacHon. As a result, we define the 1840 

GDEs health status funcHonal for the severe unhealthy phase as follows below.  1841 

𝐺𝐷𝐸𝑠𝐻𝑆(𝐻, 𝐿𝑆(𝐻)) = 405
(6$)!

⋅ (𝐻 − 𝐿𝑆(𝐻) − 𝐻# + 𝐿𝑆(𝐻#))' + 𝛾, 𝐻# ≤ 𝐻 < 𝐻" . (64) 1842 

Where 𝑑" = 𝐻" − 𝐿𝑆(𝐻") − 𝐻# + 𝐿𝑆(𝐻#), 𝐿𝑆(𝐻") = 𝐿𝑆(𝐻(𝑡")), and 𝐿𝑆(𝐻#) = 𝐿𝑆(𝐻(𝑡#)). 1843 

Since 𝜌 > 𝛾, then 𝜌 − 𝛾 > 0, and we observe that the denominator in the expression is also 1844 

strictly greater than zero. Therefore, the GDEs’ health status is a posiHve quadraHc in 𝐻 −1845 

𝐿𝑆(𝐻). The funcHon decreases as the water table height decreases and cumulaHve LS 1846 

increases. The GDEs’ health status decreases from 𝜌 towards 𝛾 as 𝐻 reduces and cumulaHve 1847 

LS increases. When the water table height is equal to 𝐻"  and cumulaHve LS is equal to 𝐿𝑆(𝐻"), 1848 

the GDEs’ health level is equal to 𝜌. When the water table height and cumulaHve LS are equal 1849 

to 𝐻#  and 𝐿𝑆(𝐻#), respecHvely, the GDEs’ health state is equal to 𝛾. 1850 

 1851 

In phase 4 (the criHcal unhealthy phase), GDEs’ health stress is simultaneously driven by a 1852 

decreasing water table height and LS caused by both elasHc and inelasHc compacHon. Another 1853 

extra factor that adds on the GDEs’ health stress in this phase is aquifer system storage 1854 

capacity loss. We define the GDEs health status funcHonal for the criHcal unhealthy phase as 1855 

follows below.  1856 

 𝐺𝐷𝐸𝑠𝐻𝑆(𝐻, 𝐿𝑆(𝐻)) = 5
(6%)!

⋅ (𝐻 − 𝐿𝑆(𝐻) − 𝐻. + 𝐿𝑆(𝐻.))', 𝐻 < 𝐻# . (65) 1857 

Where 𝑑# = 𝐻# − 𝐿𝑆(𝐻#) − 𝐻. + 𝐿𝑆(𝐻.), 𝐿𝑆(𝐻.) = 𝐿𝑆(𝐻(𝑡.)), and 𝐿𝑆(𝐻#) =1858 

𝐿𝑆(𝐻(𝑡#)). Since 𝛾 > 0, and we observe that the denominator in the expression is also 1859 

strictly greater than zero. Then, the GDEs’ health status is a posiHve quadraHc in 𝐻 − 𝐿𝑆(𝐻). 1860 

The funcHon decreases as the water table height decreases and cumulaHve LS increases. The 1861 

GDEs’ health status decreases from 𝛾 towards zero as 𝐻 reduces and cumulaHve LS increases. 1862 

When the water table height is equal to 𝐻#  and cumulaHve LS is equal to 𝐿𝑆(𝐻#), the GDEs’ 1863 

health level is equal to 𝛾. When the water table height and cumulaHve LS are equal to 𝐻. and 1864 

𝐿𝑆(𝐻.), respecHvely, the GDEs’ health state is equal to zero. 1865 

 1866 
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Storage capacity loss does not affect GDEs’ health directly like depth to water table or land 1867 

subsidence. But it undermines the aquifer system’s ability to sustain water availability, making 1868 

ecosystems more vulnerable. In phase 4 of the GDEs’ health state funcHonal, there is no 1869 

explicit parameter represenHng aquifer system storage capacity loss. However, this loss 1870 

naturally coincides with permanent land subsidence due to inelasHc compacHon, which 1871 

occurs when collapsed pore spaces are permanently lost. Notably, in this phase, inelasHc 1872 

compacHon contributes to land subsidence that is several Hmes greater than that caused by 1873 

elasHc compacHon (Sneed, 2001; Smith et al., 2017; Smith and Majumdar, 2020). It is, 1874 

however, worth menHoning that inelasHc compacHon, measured as verHcal ground 1875 

deformaHon in meters, is not an exact measure of aquifer system storage capacity loss, which 1876 

is measured in cubic meters. As a result, storage capacity cannot be directly incorporated into 1877 

the GDEs’ health funcHonal, which is based on verHcal measures such as 𝐻 and 𝐿𝑆. Instead, 1878 

the precise representaHon of storage capacity loss will be introduced later in the model, 1879 

parHcularly in the groundwater dynamics equaHon of phase 4, where storage capacity is a key 1880 

component. Moreover, the economic value of this storage loss will be accounted for in the 1881 

secHons on taxes, as well as the packaging and sequencing of taxes and quotas. 1882 

  1883 

Appendix 2. Detailed solu#on of the fourth sub-problem on taxes  1884 

 1885 

The hamiltonian funcHon of the system (9), (10), (11) is given as follows 1886 

 1887 

 ℋ>(𝑡,𝑊>, 𝐻>, 𝜆>) = −e0:9[$&
!

'%
− &$&

%
− (𝐶( + 𝐶)𝐻>)𝑊> +1888 

𝜃[ 5
(()EGHIJ)(2%020))!

 1889 

 ⋅ (𝐻> + 𝜂𝜀𝑏𝜓(𝐻> − 𝐻") − 𝐻. − 𝜂𝜀𝑏𝜓(𝐻. − 𝐻"))'] 1890 

 	+ FGHIJ
+,

[𝑅 − (1 − 𝛼)𝑊>] + 𝑏𝜓𝜋(1 − 𝑛 + 𝑛7)[𝑅 − (1 − 𝛼)𝑊>] 1891 

 	⋅ ($&
%
− &

%
− 𝐶( − 𝐶)𝐻>)] + 𝜆> ⋅

[CE(A0))$&]
<⋅+,

 (66) 1892 

EquaHon (66) can be rewrimen as follows. 1893 

 1894 

 ℋ>(𝑡,𝑊>, 𝐻>, 𝜆>) = −e0:9[$&
!

'%
− &$&

%
− (𝐶( + 𝐶)𝐻>)𝑊> + 𝐺M(𝐻> − 𝐻.)' 1895 

 	+𝐺K𝑊> − 𝐺-
()0A)$&!

%
− 𝐺-𝑅𝐶)𝐻> + 𝐺-(1 − 𝛼)𝐶)𝑊>𝐻> + 𝐺>] 1896 
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 		+𝜆> ⋅
[CE(A0))$&]

<⋅+,
 (67) 1897 

Where  1898 

 𝐺' =
FGHIJ
+,

. (68) 1899 

  1900 

 𝐺- = 𝑏𝜓𝜋(1 − 𝑛 + 𝑛7). (69) 1901 

  1902 

 𝐺> = − C&L/
%

− 𝑅𝐶(𝐺- + 𝐺'𝑅. (70) 1903 

  1904 

 𝐺K =
CL/
%
+ ()0A)&L/

%
+ 𝐺-(1 − 𝛼)𝐶( − 𝐺'(1 − 𝛼). (71) 1905 

  1906 

 𝐺M =
N5

[2%020]!
. (72) 1907 

 1908 

Hence, the first order condiHons are as follows 1909 

 1910 

 Uℋ&
U$&

= −e0:9[()0'L/()0A)
%

)𝑊> −
&
%
− 𝐶( − 𝐶)𝐻> + 𝐺K + 𝐺-(1 − 𝛼)𝐶)𝐻>] 1911 

 	+𝜆>[
(A0))
<⋅+,

] = 0. (73) 1912 

  1913 

 1914 

 𝜆̇> = − Uℋ&
U2&

. (74) 1915 

  1916 

 𝐻̇> =
)

<⋅+,
[𝑅 + (𝛼 − 1)𝑊>]. (75) 1917 

The transversality condiHon is given by lim9→;𝜆>(𝑡) = 0. From EquaHon (73), we obtain the 1918 

value for the costate variable 𝜆> as follows.  1919 

 𝜆> =
<
T
e0:9[()0'L/()0A)

%
)𝑊> −

&
%
− 𝐶( − 𝐶)𝐻> + 𝐺K + 𝐺-(1 − 𝛼)𝐶)𝐻>], (76) 1920 

where 𝑚 = (A0))
+,

. The derivaHve of 𝜆> with respect to 𝑡 is given by  1921 

 𝜆̇> =
<
T
e0:9[− :L2$&

%
+ :&

%
+ 𝑖𝐶( − 𝑖𝐺Q𝐶)𝐻> − 𝑖𝐺K 1922 

 	+ L1S+C
<⋅+,

+ L1S+T
<

𝑊> +
L2$̇&
%
]. (77) 1923 

Where,  1924 
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 𝐺Q = 𝐺-(1 − 𝛼) − 1 (78) 1925 

   1926 

 𝐺R = 1 − 2𝐺-(1 − 𝛼) (79) 1927 

The derivaHve of ℋ> with respect to the water table height 𝐻> is given by  1928 

 − Uℋ&
U2&

= −e0:9[𝐺-𝑅𝐶) − 𝐺Q𝐶)𝑊> + 2𝐺M𝐻. − 2𝐺M𝐻>]. (80) 1929 

From EquaHon (74) and (77), we obtain the following equaHon.  1930 

−𝐺-𝑅𝐶) + 𝐺Q𝐶)𝑊> − 2𝐺M𝐻. + 2𝐺M𝐻> =
Ω
𝑚 [−

𝑖𝐺R𝑊>

𝑘 +
𝑖𝑔
𝑘 + 𝑖𝐶( − 𝐺Q𝑖𝐶)𝐻> − 𝑖𝐺K 1931 

 	+ L1S+C
<⋅+,

+ L1S+T
<

𝑊> +
L2$̇&
%
]. (81) 1932 

Solving for 𝑊̇> in the above equaHon we get the following equaHons.  1933 

 <L2$̇&
T%

= <L2:$&
T%

+ <S+L1:2&
T

+ 2𝐺M𝐻> −
<:&
T%

− <:S4
T

+ <:L5
T

 1934 

 			− L1S+C
+,T

− 𝐺-𝑅𝐶) − 2𝐺M𝐻. (82) 1935 

 L2$̇&
%

= L2:$&
%

+ 𝐶)𝐺Q𝑖𝐻> +
'TL32&

<
− :&

%
− 𝑖𝐶( + 𝑖𝐺K 	−

L1S+C
+,<

− TL/S+C
<

− 'TL320
<

 (83) 1936 

  1937 

 1938 

𝑊̇> = 𝑖𝑊> +
:%S+L12&

L2
+ 'T%L32&

<L2
− :&

L2
− :%S4

L2
+ :%L5

L2
− L1%S+C

<+,L2
	− T%L/CS+

<L2
+ 'T%L320

L2
 (84) 1939 

  1940 

𝑊̇> = 𝑖𝑊> + [
:%S+L1
L2

+ 'T%L3
<L2

]𝐻> + [−
:&
L2
− :%S4

L2
+ :%L5

L2
− %L1S+C

<+,L2
			− T%L/CS+

<L2
− 'T%L320

L2
] (85) 1941 

Likewise, the value for 𝐻̇> can be rewrimen as  1942 

 𝐻̇> =
(A0))$&
<⋅+,

+ C
<⋅+,

. (86) 1943 

Consequently, we now have to solve the two simultaneous differenHal equaHons ((85) and 1944 

(86)). Thus, by leong 𝑚𝑚 = (A0))
<+,

, 𝑢𝑢 = :%S+L1
L2

+ 'T%L3
<L2

, 𝑁𝑁 = − :&
L2
− :%S4

L2
+ :%L5

L2
− %L1S+C

<+,L2
−1945 

T%L/CS+
<L2

− 'T%L320
L2

 and 𝑀𝑀 = C
<+,

, we get the following system of differenHal equaHons. 1946 

 1947 

 𝑊̇> = 𝑖𝑊> + 𝑢𝑢 ⋅ 𝐻> + 𝑁𝑁. (87) 1948 

 𝐻̇> = 𝑚𝑚 ⋅𝑊> +𝑀𝑀. (88) 1949 

Puong the above system of differenHal equaHons in a 𝐷 operator format (where 𝐷 = 6
69

), and 1950 

solving for 𝑊> yields the following second order linear non-homogeneous differenHal 1951 
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equaHon.  1952 

 [(𝐷' − 𝐷𝑖) − 𝑢𝑢 ⋅ 𝑚𝑚]𝑊> = 𝑢𝑢 ⋅ 𝑀𝑀. (89) 1953 

The parHcular soluHon of the above differenHal equaHon is given by: − jj
TT

 and the soluHon 1954 

to the homogeneous differenHal equaHon ([(𝐷' − 𝐷𝑖) − 𝑢𝑢 ⋅ 𝑚𝑚]𝑊> = 0) by  1955 

 𝑊-(𝑡) = 𝑀𝐴e9@+ +𝑀𝐵e9@! , (90) 1956 

where 𝑥),' =
:±√:!E>!!TT

'
 are the characterisHc roots. The parameters 𝑀𝐴 and 𝑀𝐵 are 1957 

constants to be determined by imposing the iniHal condiHons. SubsHtuHng the right hand side 1958 

(RHS) of (90) for 𝑊>(𝑡) in the homogenous DE (𝐻̇> = 𝑚𝑚 ⋅𝑊>) and integraHng gives the 1959 

soluHon for the water table level 𝐻>(𝑡) as follows.  1960 

 𝐻>(𝑡) =
TT⋅j+
@+

e9@+ + TT⋅j.
@!

e9@! . (91) 1961 

Furthermore, the steady state level water table is given by  1962 

 𝐻>∗ = [
:==>>0BB

!!
] (92) 1963 

Hence, the soluHon for 𝑊>
∗(𝑡) and 𝐻>∗(𝑡) are given as follows, respecHvely.  1964 

 𝑊>
∗(𝑡) = 𝑀𝐴e9@+ +𝑀𝐵e9@! − jj

TT
, (93) 1965 

   1966 

 𝐻>∗(𝑡) =
TT⋅j+
@+

e9@+ + TT⋅j.
@!

e9@! +
:==>>0BB

!!
. (94) 1967 

Similarly to Gisser and Sanchez (1980) results, it is worth menHoning that +4𝑢𝑢𝑚𝑚 > 0 since 1968 

𝑘 < 0, 𝐶) < 0, 𝑖 > 0, 𝐴 > 0, 𝑆 > 0, Ω > 0, 𝐻. > 0, 𝐻# > 0, 𝜓 > 0, 𝜃 > 0, 𝛾 > 0, 𝜂 > 0, 𝜀 >1969 

0, 𝑏 > 0, 𝛽 > 0, 𝜋 > 0, 𝑛 > 0, 𝑛7 > 0, 𝐺- > 0, 𝐺Q < 0, 𝐺R > 0, 𝐺M > 0, 𝛼 < 1 ⟹ (𝛼 −1970 

1) < 0 or (1 − 𝛼) > 0, and 𝑚 < 0. Furthermore, we observe that :%S+L1(A0))
<+,L2

> 0 and 1971 

'T%L3(A0))
<!+,L2

< 0. It can also be proved that :%S+L1(A0))
<+,L2

> 'T%L3(A0))
<!+,L2

. Hence, +4𝑢𝑢 ⋅ 𝑚𝑚 =1972 

4[:%S+L1(A0))
<+,L2

+ 'T%L3(A0))
<!+,L2

] > 0. This implies that 𝑥) > 𝑖 and 𝑥' < 0. Therefore, 𝑥' is the 1973 

stable characterisHc root. Likewise, similarly to Gisser and Sanchez (1980), we obtained that 1974 

the transversality condiHon is only saHsfied when 𝑀𝐴 = 0. By imposing the iniHal condiHons 1975 

of the sub problem (𝐻>(𝑡#) = 𝐻#), we obtain the constant 𝑀𝐵 as follows below.  1976 

 𝑀𝐵 = @!
TT

[𝐻# −
:==>>0BB

!!
]e0@!9% . (95) 1977 

Therefore, the opHmal soluHons for 𝑊>
∗(𝑡) and 𝐻>∗(𝑡) are given as follows below, respecHvely.  1978 
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 𝑊>
∗(𝑡) = @!

TT
[𝐻# −

:==>>0BB

!!
]e@!(909%) − jj

TT
. (96) 1979 

   1980 

 𝐻>∗(𝑡) = [𝐻# −
:==>>0BB

!!
]e@!(909%) +

:==>>0BB

!!
. (97) 1981 

Because 𝑥' < 0 and 𝑖 > 0, the funcHonal defined in (9) is verified to be a convergent integral. 1982 

  1983 

Appendix 3. Proof of Proposi#on 1. 1984 

 1985 

To determine the impact of the tax per unit of land sinking on opHmal soluHons, we 1986 

differenHate the opHmal soluHons with respect to 𝛽. 1987 

 1988 

 U$∗

UF
= −[ :()0A)GHIJ+,<!@!

[<+,:S+L1E'(A0))L3](A0))
]e@!(909%) (98) 1989 

We observe that 𝑖(1 − 𝛼)𝜂𝜀𝑏𝜓𝐴𝑆Ω'𝑥' < 0 since 𝑥' < 0, 𝑖 > 0, (1 − 𝛼) > 0, 𝜂 > 0, 𝜀 > 0 1990 

,𝑏 > 0 ,𝜓 > 0, 𝐴𝑆 > 0, and Ω' > 0. We also observe that e@!(909%) > 0 and e@!(909%) < 1 1991 

always since 𝑥' < 0 and 𝑡 > 𝑡#. Likewise, Ω𝐴𝑆𝑖𝐶)𝐺Q(𝛼 − 1) < 0 since Ω > 0, 𝐴𝑆 > 0, 𝑖 > 0, 1992 

𝐶) < 0, (𝛼 − 1) < 0, and 𝐺Q < 0. The term 2(𝛼 − 1)𝐺M(𝛼 − 1) > 0 since 2(𝛼 − 1)' > 0, 1993 

and 𝐺M > 0. Therefore, the sign of the derivaHve depends on sign of the denominator, if 1994 

Ω𝐴𝑆𝑖𝐶)𝐺Q(𝛼 − 1) > 2(𝛼 − 1)𝐺M(𝛼 − 1) the the derivaHve is negaHve. Thus, Ω𝐴𝑆𝑖𝐶)𝐺Q(𝛼 −1995 

1) > 2(𝛼 − 1)𝐺M(𝛼 − 1) ⟹ 𝑖 > '(A0))L3
<+,S+L1

 always since 𝑖 > 0 and '(A0))L3
<+,S+L1

< 0. The case 1996 

Ω𝐴𝑆𝑖𝐶)𝐺Q(𝛼 − 1) ≤ 2(𝛼 − 1)𝐺M(𝛼 − 1) can not occur since it will imply that 𝑖 ≤ '(A0))L3
<+,S+L1

 1997 

which is impossible since 𝑖 > 0 and '(A0))L3
<+,S+L1

< 0. In addiHon, the derivaHve of the opHmal 1998 

water table height with respect to 𝛽 is given below. 1999 

 2000 

 U2∗

UF
= [ :()0A)GHIJ<

<+,:S+L1E'(A0))L3]
](1 − e@!(909%)). (99) 2001 

We observe that 𝑖(1 − 𝛼)𝜂𝜀𝑏𝜓Ω > 0 since 𝑖 > 0, (1 − 𝛼) > 0, 𝜂 > 0, 𝜀 > 0 ,𝑏 > 0 ,𝜓 > 0, 2002 

and Ω' > 0. We also observe that e@!(909%) > 0 and e@!(909%) < 1 always since 𝑥' < 0 and 2003 

𝑡 > 𝑡#, hence (1 − e@!(909%)) > 0. Likewise, Ω𝐴𝑆𝑖𝐶)𝐺Q > 0 since Ω > 0, 𝐴𝑆 > 0, 𝑖 > 0, 𝐶) <2004 

0, and 𝐺Q < 0. The term 2(𝛼 − 1)𝐺M < 0 since 2(𝛼 − 1) < 0, and 𝐺M > 0. Therefore, the sign 2005 

of the derivaHve depends on sign of the denominator, if Ω𝐴𝑆𝑖𝐶)𝐺Q > 2(𝛼 − 1)𝐺M the the 2006 
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derivaHve is posiHve. Thus, Ω𝐴𝑆𝑖𝐶)𝐺Q > 2(𝛼 − 1)𝐺M ⟹ 𝑖 > '(A0))L3
<+,S+L1

 always since 𝑖 > 0 and 2007 

'(A0))L3
<+,S+L1

< 0. The case Ω𝐴𝑆𝑖𝐶)𝐺Q ≤ 2(𝛼 − 1)𝐺M can not occur since it will imply that 𝑖 ≤2008 

'(A0))L3
<+,S+L1

 which is impossible since 𝑖 > 0 and '(A0))L3
<+,S+L1

< 0. Therefore, a higher Pigouvian tax 2009 

reduces the opHmal level of groundwater extracHon and raises the opHmal water table level. 2010 

 2011 

Appendix 4. Proof of Proposi#on 2. 2012 

 2013 

To determine the impact of aquifer storage capacity reducHon on opHmal soluHons, we 2014 

differenHate the expression for the economic cost 𝜙(𝑊,𝐻) of losing the aquifer systems’ 2015 

storage capacity with respect to the opHmal water table level and extracHons. This proof is 2016 

the same as that of Ndahangwapo et al. (2024). 2017 

 2018 

 Ul($∗,2∗)
U$∗ = )

%
 (100) 2019 

The derivaHve is negaHve since 𝑘 < 0.  2020 

 Ul($∗,2∗)
U2∗

= −𝐶) (101) 2021 

The derivaHve is posiHve since 𝐶) < 0. Therefore, a higher Pigouvian tax reduces the opHmal 2022 

level of groundwater extracHon and raises the opHmal water table level. 2023 

 2024 

Appendix 5. Detailed solu#on of the third sub-problem on taxes  2025 

 2026 

We can now solve for the third sub-problem since we have the soluHon (𝑆𝑃>∗) to the fourth 2027 

sub-problem. The hamiltonian funcHon of the system (16), (17), (18) is given as follows 2028 

 2029 

 ℋ-(𝑡,𝑊-, 𝐻-, 𝜆-) = −e0:9[$/
!

'%
− &$/

%
− (𝐶( + 𝐶)𝐻-)𝑊- +2030 

𝜃[ 5
(()EGHIJ)(2%02$))!

 2031 

 ⋅ (𝐻- + 𝜂𝜀𝑏𝜓(𝐻- − 𝐻") − 𝐻# − 𝜂𝜀𝑏𝜓(𝐻# − 𝐻"))' + 𝛾] 2032 

 	+ FGHIJ
+,

[𝑅 − (1 − 𝛼)𝑊-]] + 𝜆- ⋅
[CE(A0))$/]

+,
 (102) 2033 

EquaHon (102) can be rewrimen as follows. 2034 

 2035 
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 ℋ-(𝑡,𝑊-, 𝐻-, 𝜆-) = −e0:9[$/
!

'%
− &$/

%
− (𝐶( + 𝐶)𝐻-)𝑊- + 𝐺Z(𝐻- − 𝐻#)' 2036 

 	+𝜃𝛾 + 𝐺'[𝑅 − (1 − 𝛼)𝑊-]] + 𝜆- ⋅
[CE(A0))$/]

+,
 (103) 2037 

Where  2038 

 𝐺' =
FGHIJ
+,

. (104) 2039 

 2040 

 2041 

 𝐺Z =
N(405)
[2%02$]!

. (105) 2042 

 2043 

Hence, the first order condiHons are as follows 2044 

 2045 

 Uℋ/
U$/

= −e0:9[$/
%
− &

%
− 𝐶( − 𝐶)𝐻- − 𝐺'(1 − 𝛼)] + 𝜆-[

(A0))
+,

] = 0. (106) 2046 

  2047 

 2048 

 𝜆̇- = − Uℋ/
U2/

. (107) 2049 

  2050 

 𝜆-∗ (𝑡# ,𝑊-
∗(𝑡#), 𝐻-∗(𝑡#)) = 𝜆>∗ (𝑡# ,𝑊>

∗(𝑡#), 𝐻>∗(𝑡#)) (108) 2051 

 ℋ-
∗(𝑡#) =

U,V&∗(9%,$&∗(9%),2&∗(9%))
U9%

, (109) 2052 

   2053 

 𝐻̇- =
)
+,
[𝑅 + (𝛼 − 1)𝑊-]. (110) 2054 

The transversality condiHon is given by lim9→;𝜆-(𝑡) = 0. From EquaHon (106), we obtain 2055 

the value for the costate variable 𝜆- as follows.  2056 

 𝜆- =
)
T
e0:9[$/

%
− &

%
− 𝐶( − 𝐶)𝐻- − 𝐺'(1 − 𝛼)], (111) 2057 

where 𝑚 = (A0))
+,

. The derivaHve of 𝜆- with respect to 𝑡 is given by  2058 

 𝜆̇- =
)
T
e0:9[− :$/

%
+ :&

%
+ 𝑖𝐶( + 𝑖𝐶)𝐻- + 𝑖𝐺'(1 − 𝛼) 2059 

 		− S+C
+,
− 𝐶)𝑚𝑊- +

$̇/
%
]. (112) 2060 

The derivaHve of ℋ- with respect to the water table height 𝐻- is given by  2061 

 − Uℋ/
U2/

= −e0:9[𝐶)𝑊- − 2𝐺Z𝐻- + 2𝐺Z𝐻#]. (113) 2062 
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From EquaHon (107) and (112), we obtain the following equaHon.  2063 

 −𝐶)𝑊- + 2𝐺Z𝐻- − 2𝐺Z𝐻# =
)
T
[− :$/

%
+ :&

%
+ 𝑖𝐶( + 𝑖𝐶)𝐻- + 𝑖𝐺'(1 − 𝛼) 2064 

 		− S+C
+,
− 𝐶)𝑚𝑊- +

$̇/
%
]. (114) 2065 

Solving for 𝑊̇- in the above equaHon we get the following equaHons.  2066 

 $̇/
T%

= :$/
T%

− :&
T%

− :S4
T
− :S+2/

T
− :L!()0A)

T
 2067 

 			+ S+C
+,T

+ 2𝐺Z𝐻- − 2𝐺Z𝐻#  (115) 2068 

  2069 

 2070 

 $̇/
%
= :$/

%
− :&

%
− 𝑖𝐶( − 𝑖𝐶)𝐻- − 𝑖𝐺'(1 − 𝛼) 2071 

 			+ S+C
+,
+ 2𝑚𝐺Z𝐻- − 2𝑚𝐺Z𝐻#  (116) 2072 

  2073 

 2074 

 𝑊̇- = 𝑖𝑊- − 𝑖𝑔 − 𝑖𝑘𝐶( − 𝑖𝑘𝐶)𝐻- − 𝑖𝑘𝐺'(1 − 𝛼) 2075 

 			+ S+C%
+,

+ 2𝑚𝑘𝐺Z𝐻- − 2𝑚𝑘𝐺Z𝐻#  (117) 2076 

  2077 

 2078 

 𝑊̇- = 𝑖𝑊- + [2𝑚𝑘𝐺Z − 𝑖𝑘𝐶)]𝐻- + [−𝑖𝑔 − 𝑖𝑘𝐶( − 𝑖𝑘𝐺'(1 − 𝛼) 2079 

 			+ S+C%
+,

− 2𝑚𝑘𝐺Z𝐻#] (118) 2080 

Likewise, the value for 𝐻̇- can be rewrimen as  2081 

 𝐻̇- =
(A0))$/

+,
+ C

+,
. (119) 2082 

Consequently, we now have to solve the two simultaneous differenHal equaHons ((118) and 2083 

(119)). Thus, by leong 𝑚 = (A0))
+,

, 𝑢𝑢𝑢 = 2𝑚𝑘𝐺Z − 𝑖𝑘𝐶), 𝑁𝑁𝑁 = −𝑖𝑔 − 𝑖𝑘𝐶( − 𝑖𝑘𝐺'(1 −2084 

𝛼) + S+C%
+,

− 2𝑚𝑘𝐺Z𝐻#  and 𝑀 = C
+,

, we get the following system of differenHal equaHons. 2085 

 2086 

 𝑊̇- = 𝑖𝑊- + 𝑢𝑢𝑢 ⋅ 𝐻- + 𝑁𝑁𝑁. (120) 2087 

 𝐻̇- = 𝑚 ⋅𝑊- +𝑀. (121) 2088 

Puong the above system of differenHal equaHons in a 𝐷 operator format (where 𝐷 = 6
69

), and 2089 

solving for 𝑊- yields the following second order linear non-homogeneous differenHal 2090 
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equaHon.  2091 

 [(𝐷' − 𝐷𝑖) − 𝑢𝑢𝑢 ⋅ 𝑚]𝑊- = 𝑢𝑢𝑢 ⋅ 𝑀. (122) 2092 

The parHcular soluHon of the above differenHal equaHon is given by: −j
T

 and the 2093 

characterisHc roots by 𝑧),' =
:±√:!E>!!!⋅T

'
. Furthermore, the steady state level water table is 2094 

given by  2095 

 𝐻-∗ = [
:=>0BBB

!!!
] (123) 2096 

Hence, the soluHon for 𝑊-
∗(𝑡) and 𝐻-∗(𝑡) are given as follows, respecHvely.  2097 

 𝑊-
∗(𝑡) = 𝐷𝐴e9W+ + 𝐷𝐵e9W! − j

T
, (124) 2098 

   2099 

 𝐻-∗(𝑡) =
T⋅X+
W+

e9W+ + T⋅X.
W!

e9W! +
:=>0BBB

!!!
. (125) 2100 

Where 𝐷𝐴 and 𝐷𝐵 are obtained by imposing the iniHal condiHons. 2101 

 2102 

 𝐷𝐵 = W!
T
e0W!9$[𝐻" −

'=
>0BBB

!!!
 2103 

 		−
[2%0

'=
>*777
### ]0[2$0

'=
>*777
### ][8!(:%*:$)

[8+(:%*:$)0[8!(:%*:$)
]. (126) 2104 

   2105 

 𝐷𝐴 = W+
T
[
[2%0

'=
>*777
### ]0[2$0

'=
>*777
### ][8!(:%*:$)

[8+:%0[8+:$<8!(:%*:$)
]. (127) 2106 

Therefore, the funcHonal defined in (16) is verified to be a convergent integral. 2107 

 2108 

Appendix 6. Proof of Proposi#on 3. 2109 

 2110 

To determine the impact of the tax per unit of land sinking on opHmal soluHons, we 2111 

differenHate the opHmal soluHons with respect to 𝛽. 2112 

 2113 

 U$∗

UF
= :%()0A)GHIJ

T+,['T%LC0:%S+]
× [ ([

8!(:%*:$)0))[:8+W+
[:%8+0[8+:$<8!(:%*:$)

 2114 

 		−𝑧'eW!(909$) −
([8!(:%*:$)0))[8!(:*:$)W!
[:%8+0[:$8+<8!(:%*:$)

]. (128) 2115 

We observe that eW!(9%09$) − 1 < 0 since eW!(9%09$) ∈ (0,1) because𝑧' < 0 and 𝑡# > 𝑡". In 2116 
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addiHon, eW+9 > 1 since 𝑡 > 0 and 𝑧) > 0. In addiHon, eW+9% > 1. Therefore, (eW!(9%09$) −2117 

1)eW+9𝑧) < 0, and eW+9% − eW+9$EW!(9%09$) > 0 because eW+9% > eW+9$EW!(9%09$) implies eW+ >2118 

eW!  always which is true since eW+ > 0 and eW! ∈ (0,1). Therefore, ([
8!(:%*:$)0))[:8+W+

[:%8+0[8+:$<8!(:%*:$)
< 0. 2119 

Furthermore, 𝑧'eW!(909$) < 0 since 𝑧' < 0, and eW!(909$) ∈ (0,1) because 𝑧' < 0 and 𝑡 > 𝑡". 2120 

In addiHon, the final term in the bracket is ([
8!(:%*:$)0))[8!(:*:$)W!
[:%8+0[:$8+<8!(:%*:$)

< 0. The terms 2𝑚'𝐴𝑆𝑘𝐺Z <2121 

0, 𝑚𝐴𝑆𝑖𝑘𝐶) < 0, and 𝑚𝐴𝑆[2𝑚𝑘𝐺Z − 𝑖𝑘𝐶)] < 0 since 2𝑚'𝑘𝐺Z𝐴𝑆 > 𝑚𝐴𝑆𝑖𝑘𝐶) implies 2122 
'TLC
S+

> 𝑖 where 𝑖 ∈ (0,1) and 𝐺Z > 0 implies 'TLC
S+

> 0. The whole derivaHve is negaHve 2123 

because  2124 

 ([8!(:%*:$)0))[:8+W+
[:%8+0[8+:$<8!(:%*:$)

> 𝑧'eW!(909$) +
([8!(:%*:$)0))[8!(:*:$)W!
[:%8+0[:$8+<8!(:%*:$)

 (129) 2125 

The Lej Hand Side (LHS) is less than zero and the Right Hand Side (RHS) is also less than zero, 2126 

but the RHS is more negaHve than the other because  2127 

 W![8!(:*:$)

[8+:W+
> ([8!(:%*:$)0))[8!(:*:$)W!

[:%8+
. (130) 2128 

We now differenHate the opHmal water table level with respect to 𝛽.  2129 

 U2∗

UF
= :%()0A)GHIJ

T+,['T%LC0:%S+]
× [ ([

8!(:%*:$)0))[:8+W+
[:%8+0[8+:$<8!(:%*:$)

 2130 

 		−𝑧'eW!(909$) −
([8!(:%*:$)0))[8!(:*:$)W!
[:%8+0[:$8+<8!(:%*:$)

+ )
T
]. (131) 2131 

We observe that eW!(9%09$) − 1 < 0 since eW!(9%09$) ∈ (0,1) because𝑧' < 0 and 𝑡# > 𝑡". In 2132 

addiHon, eW+9 > 1 since 𝑡 > 0 and 𝑧) > 0. In addiHon, eW+9% > 1. Therefore, (eW!(9%09$) −2133 

1)eW+9𝑧) < 0, and eW+9% − eW+9$EW!(9%09$) > 0 because eW+9% > eW+9$EW!(9%09$) implies eW+ >2134 

eW!  always which is true since eW+ > 0 and eW! ∈ (0,1). Therefore, ([
8!(:%*:$)0))[:8+W+

[:%8+0[8+:$<8!(:%*:$)
< 0. the 2135 

term )
T
< 0 since 𝑚 < 0. Furthermore, 𝑧'eW!(909$) < 0 since 𝑧' < 0, and eW!(909$) ∈ (0,1) 2136 

because 𝑧' < 0 and 𝑡 > 𝑡". In addiHon, the final term in the bracket is ([
8!(:%*:$)0))[8!(:*:$)W!
[:%8+0[:$8+<8!(:%*:$)

<2137 

0. The terms 2𝑚'𝐴𝑆𝑘𝐺Z < 0, 𝑚𝐴𝑆𝑖𝑘𝐶) < 0, and 𝑚𝐴𝑆[2𝑚𝑘𝐺Z − 𝑖𝑘𝐶)] < 0 since 2138 

2𝑚'𝑘𝐺Z𝐴𝑆 > 𝑚𝐴𝑆𝑖𝑘𝐶) implies 'TLC
S+

> 𝑖 where 𝑖 ∈ (0,1) and 𝐺Z > 0 implies 'TLC
S+

> 0. The 2139 

whole derivaHve is negaHve because  2140 

 ([8!(:%*:$)0))[:8+W+
[:%8+0[8+:$<8!(:%*:$)

> 𝑧'eW!(909$) +
([8!(:%*:$)0))[8!(:*:$)W!
[:%8+0[:$8+<8!(:%*:$)

+ )
T

 (132) 2141 

The Lej Hand Side (LHS) is less than zero and the Right Hand Side (RHS) is also less than zero, 2142 

but the RHS is more negaHve than the other because  2143 
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 W![8!(:*:$)

[8+:W+
> ([8!(:%*:$)0))[8!(:*:$)W!

[:%8+
+ )

T
. (133) 2144 

Therefore, a higher Pigouvian tax reduces the opHmal level of groundwater extracHon and 2145 

raises the opHmal water table level. 2146 

 2147 

Appendix 7. Proof of Proposi#on 4. 2148 

 2149 

To determine the impact of the tax per unit of land sinking on ecosystem health, we 2150 

differenHate the funcHonal GDEsHS with respect to 𝛽.  2151 

 ULX]m2,(2∗)
UF

= 2(𝐻∗ − 𝐻#)(1 + 𝜂𝜀𝑏𝜓)'
405
(6$)!

:%()0A)GHIJ
T+,['T%LC0:%S+]

 2152 

 	× 	 [ ([
8!(:%*:$)0))[:8+W+

[:%8+0[8+:$<8!(:%*:$)
		− 𝑧'eW!(909$) −

([8!(:%*:$)0))[8!(:*:$)W!
[:%8+0[:$8+<8!(:%*:$)

+ )
T
]. (134) 2153 

We observe that 𝐻∗ − 𝐻# > 0 since 𝐻∗ > 𝐻#. If 𝐻∗ = 𝐻#, the ecosystem health has reached 2154 

the criHcal thtreshold beyond which it change sto the criHcal unhealthy phase. In addiHon, 2155 

(1 + 𝜂𝜀𝑏𝜓)' > 0 and 405
(6$)!

> 0 since 𝜌 > 𝛾. We further observe that eW!(9%09$) − 1 < 0 since 2156 

eW!(9%09$) ∈ (0,1) because𝑧' < 0 and 𝑡# > 𝑡". In addiHon, eW+9 > 1 since 𝑡 > 0 and 𝑧) > 0. 2157 

In addiHon, eW+9% > 1. Therefore, (eW!(9%09$) − 1)eW+9𝑧) < 0, and eW+9% − eW+9$EW!(9%09$) > 0 2158 

because eW+9% > eW+9$EW!(9%09$) implies eW+ > eW!  always which is true since eW+ > 0 and eW! ∈2159 

(0,1). Therefore, ([8!(:%*:$)0))[:8+W+
[:%8+0[8+:$<8!(:%*:$)

< 0. the term )
T
< 0 since 𝑚 < 0. Furthermore, 2160 

𝑧'eW!(909$) < 0 since 𝑧' < 0, and eW!(909$) ∈ (0,1) because 𝑧' < 0 and 𝑡 > 𝑡". In addiHon, the 2161 

final term in the bracket is ([
8!(:%*:$)0))[8!(:*:$)W!
[:%8+0[:$8+<8!(:%*:$)

< 0. The terms 2𝑚'𝐴𝑆𝑘𝐺Z < 0, 𝑚𝐴𝑆𝑖𝑘𝐶) <2162 

0, and 𝑚𝐴𝑆[2𝑚𝑘𝐺Z − 𝑖𝑘𝐶)] < 0 since 2𝑚'𝑘𝐺Z𝐴𝑆 > 𝑚𝐴𝑆𝑖𝑘𝐶) implies 'TLC
S+

> 𝑖 where 𝑖 ∈2163 

(0,1) and 𝐺Z > 0 implies 'TLC
S+

> 0. The whole derivaHve is negaHve because  2164 

 ([8!(:%*:$)0))[:8+W+
[:%8+0[8+:$<8!(:%*:$)

> 𝑧'eW!(909$) +
([8!(:%*:$)0))[8!(:*:$)W!
[:%8+0[:$8+<8!(:%*:$)

+ )
T

 (135) 2165 

The Lej Hand Side (LHS) is less than zero and the Right Hand Side (RHS) is also less than zero, 2166 

but the RHS is more negaHve than the other because  2167 

 W![8!(:*:$)

[8+:W+
> ([8!(:%*:$)0))[8!(:*:$)W!

[:%8+
+ )

T
. (136) 2168 

Therefore, the higher the Pigouvian tax the higher the opHmal level of the GDEs’ health. 2169 

 2170 

 2171 
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Appendix 8. Detailed solu#on of the second sub-problem on taxes  2172 

 2173 

We can now solve for the second sub-problem since we have the soluHon (𝑆𝑃-∗) to the third 2174 

sub-problem. The hamiltonian funcHon of the system (25), (26), (27) is given as follows 2175 

 2176 

 ℋ'(𝑡,𝑊', 𝐻', 𝜆') = −e0:9[$!
!

'%
− &$!

%
− (𝐶( + 𝐶)𝐻')𝑊' + 𝜃[

(/04)
(2#02$)!

 2177 

 		⋅ (𝐻' − 𝐻")' + 𝜌]] + 𝜆' ⋅
[CE(A0))$!]

+,
 (137) 2178 

EquaHon (137) can be rewrimen as follows. 2179 

 2180 

 ℋ'(𝑡,𝑊', 𝐻', 𝜆') = −e0:9[$!
!

'%
− &$!

%
− (𝐶( + 𝐶)𝐻')𝑊' + 𝐺)((𝐻' − 𝐻")' +2181 

𝜃𝜌] 2182 

 		+𝜆' ⋅
[CE(A0))$!]

+,
 (138) 2183 

Where 2184 

 2185 

 𝐺)( =
N(/04)
[2#02$]!

. (139) 2186 

 2187 

Hence, the first order condiHons are as follows 2188 

 2189 

 Uℋ!
U$!

= −e0:9[$!
%
− &

%
− 𝐶( − 𝐶)𝐻'] + 𝜆'[

(A0))
+,

] = 0. (140) 2190 

  2191 

 2192 

 𝜆̇' = − Uℋ!
U2!

. (141) 2193 

  2194 

 𝜆'∗ (𝑡" ,𝑊'
∗(𝑡"), 𝐻'∗(𝑡")) = 𝜆-∗ (𝑡" ,𝑊-

∗(𝑡"), 𝐻-∗(𝑡")) (142) 2195 

 ℋ'
∗(𝑡") =

U,V/∗(9$,$/∗(9$),2/∗(9$))
U9$

, (143) 2196 

   2197 

 𝐻̇' =
)
+,
[𝑅 + (𝛼 − 1)𝑊']. (144) 2198 

The transversality condiHon is given by lim9→;𝜆'(𝑡) = 0. From EquaHon (140), we obtain 2199 

the value for the costate variable 𝜆' as follows.  2200 
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 𝜆' =
)
T
e0:9[$!

%
− &

%
− 𝐶( − 𝐶)𝐻'], (145) 2201 

where 𝑚 = (A0))
+,

. The derivaHve of 𝜆' with respect to 𝑡 is given by  2202 

 𝜆̇' =
)
T
e0:9[− :$!

%
+ :&

%
+ 𝑖𝐶( + 𝑖𝐶)𝐻' 		−

S+C
+,
− 𝐶)𝑚𝑊' +

$̇!
%
]. (146) 2203 

The derivaHve of ℋ' with respect to the water table height 𝐻- is given by  2204 

 − Uℋ!
U2!

= −e0:9[𝐶)𝑊' − 2𝐺)(𝐻' + 2𝐺)(𝐻"]. (147) 2205 

From EquaHon (141) and (146), we obtain the following equaHon.  2206 

 −𝐶)𝑊' + 2𝐺)(𝐻' − 2𝐺)(𝐻" =
)
T
[− :$!

%
+ :&

%
+ 𝑖𝐶( + 𝑖𝐶)𝐻' 2207 

 		− S+C
+,
− 𝐶)𝑚𝑊' +

$̇!
%
]. (148) 2208 

Solving for 𝑊̇' in the above equaHon we get the following equaHons.  2209 

 $̇!
T%

= :$!
T%

− :&
T%

− :S4
T
− :S+2!

T
+ S+C

+,T
+ 2𝐺)(𝐻' − 2𝐺)(𝐻"  (149) 2210 

  2211 

 2212 

 $̇!
%
= :$!

%
− :&

%
− 𝑖𝐶( − 𝑖𝐶)𝐻' +

S+C
+,
+ 2𝑚𝐺)(𝐻' − 2𝑚𝐺)(𝐻"  (150) 2213 

  2214 

 2215 

 𝑊̇' = 𝑖𝑊' − 𝑖𝑔 − 𝑖𝑘𝐶( − 𝑖𝑘𝐶)𝐻' +
S+C%
+,

+ 2𝑚𝑘𝐺)(𝐻' − 2𝑚𝑘𝐺)(𝐻"  (151) 2216 

  2217 

 2218 

 𝑊̇' = 𝑖𝑊' + [2𝑚𝑘𝐺)( − 𝑖𝑘𝐶)]𝐻' + [−𝑖𝑔 − 𝑖𝑘𝐶( +
S+C%
+,

− 2𝑚𝑘𝐺)(𝐻"] (152) 2219 

Likewise, the value for 𝐻̇' can be rewrimen as  2220 

 𝐻̇' =
(A0))$!

+,
+ C

+,
. (153) 2221 

Consequently, we now have to solve the two simultaneous differenHal equaHons ((152) and 2222 

(153)). Thus, by leong 𝑚 = (A0))
+,

, 𝑑𝑑𝑑 = 2𝑚𝑘𝐺)( − 𝑖𝑘𝐶), 𝑃𝑃𝑃 = −𝑖𝑔 − 𝑖𝑘𝐶( +
S+C%
+,

−2223 

2𝑚𝑘𝐺)(𝐻"  and 𝑀 = C
+,

, we get the following system of differenHal equaHons. 2224 

 2225 

 𝑊̇' = 𝑖𝑊' + 𝑑𝑑𝑑 ⋅ 𝐻' + 𝑃𝑃𝑃. (154) 2226 

 𝐻̇' = 𝑚 ⋅𝑊' +𝑀. (155) 2227 
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Puong the above system of differenHal equaHons in a 𝐷 operator format (where 𝐷 = 6
69

), and 2228 

solving for 𝑊' yields the following second order linear non-homogeneous differenHal 2229 

equaHon.  2230 

 [(𝐷' − 𝐷𝑖) − 𝑑𝑑𝑑 ⋅ 𝑚]𝑊' = 𝑑𝑑𝑑 ⋅ 𝑀. (156) 2231 

The parHcular soluHon of the above differenHal equaHon is given by: −j
T

 and the 2232 

characterisHc roots by 𝑞),' =
:±√:!E>⋅666⋅T

'
. Furthermore, the steady state level water table 2233 

is given by  2234 

 𝐻'∗ = [
:=>0VVV

666
] (157) 2235 

Hence, the soluHon for 𝑊'
∗(𝑡) and 𝐻'∗(𝑡) are given as follows, respecHvely.  2236 

 𝑊'
∗(𝑡) = 𝐸𝐴e9\+ + 𝐸𝐵e9\! − j

T
, (158) 2237 

   2238 

 𝐻'∗(𝑡) =
T⋅]+
\+

e9\+ + T⋅].
\!

e9\! +
:=>0VVV

666
. (159) 2239 

Where 𝐸𝐴 and 𝐸𝐵 are obtained by imposing the iniHal condiHons. 2240 

 2241 

 𝐸𝐵 = \!
T
e0\!9#[𝐻! −

'=
>0VVV

666
 2242 

 		−
[2$0

'=
>*???
@@@ ]0[2#0

'=
>*???
@@@ ][A!(:$*:#)

[A+(:$*:#)0[A!(:$*:#)
]. (160) 2243 

   2244 

 𝐸𝐴 = \+
T
[
[2$0

'=
>*???
@@@ ]0[2#0

'=
>*???
@@@ ][A!(:$*:#)

[A+:$0[A+:#<A!(:$*:#)
]. (161) 2245 

Therefore, the funcHonal defined in (25) is verified to be a convergent integral. 2246 

 2247 

Appendix 9. Detailed solu#on of the first sub-problem on taxes  2248 

 2249 

We can now solve for the first sub-problem since we have the soluHon (𝑆𝑃'∗) to the second 2250 

sub-problem. The hamiltonian funcHon of the system (34), (35), (36) is given as follows 2251 

 2252 

 ℋ)(𝑡,𝑊), 𝐻), 𝜆)) = −e0:9[$+
!

'%
− &$+

%
− (𝐶( + 𝐶)𝐻))𝑊) + 𝜃[

(/0))
(,"02#)!

 2253 
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 		⋅ (𝑆* − 𝐻))' + 1]] + 𝜆) ⋅
[CE(A0))$+]

+,
 (162) 2254 

EquaHon (162) can be rewrimen as follows. 2255 

 2256 

 ℋ)(𝑡,𝑊), 𝐻), 𝜆)) = −e0:9[$+
!

'%
− &$+

%
− (𝐶( + 𝐶)𝐻))𝑊) + 𝐺))(𝑆* − 𝐻))' + 𝜃] 2257 

 		+𝜆) ⋅
[CE(A0))$+]

+,
 (163) 2258 

Where 2259 

 2260 

 𝐺)) =
N(/0))
[,"02#]!

. (164) 2261 

 2262 

Hence, the first order condiHons are as follows 2263 

 2264 

 Uℋ+
U$+

= −e0:9[$+
%
− &

%
− 𝐶( − 𝐶)𝐻)] + 𝜆)[

(A0))
+,

] = 0. (165) 2265 

  2266 

 2267 

 𝜆̇) = − Uℋ+
U2+

. (166) 2268 

  2269 

 𝜆)∗(𝑡!,𝑊)
∗(𝑡!), 𝐻)∗(𝑡!)) = 𝜆'∗ (𝑡!,𝑊'

∗(𝑡!), 𝐻'∗(𝑡!)) (167) 2270 

 ℋ)
∗(𝑡!) =

U,V!∗(9#,$!∗(9#),2!∗(9#))
U9#

, (168) 2271 

   2272 

 𝐻̇) =
)
+,
[𝑅 + (𝛼 − 1)𝑊)]. (169) 2273 

The transversality condiHon is given by lim9→;𝜆)(𝑡) = 0. From EquaHon (165), we obtain the 2274 

value for the costate variable 𝜆) as follows.  2275 

 𝜆) =
)
T
e0:9[$+

%
− &

%
− 𝐶( − 𝐶)𝐻)], (170) 2276 

where 𝑚 = (A0))
+,

. The derivaHve of 𝜆) with respect to 𝑡 is given by  2277 

 𝜆̇) =
)
T
e0:9[− :$+

%
+ :&

%
+ 𝑖𝐶( + 𝑖𝐶)𝐻) 		−

S+C
+,
− 𝐶)𝑚𝑊) +

$̇+
%
]. (171) 2278 

  The derivaHve of ℋ) with respect to the water table height 𝐻) is given by  2279 

 − Uℋ+
U2+

= −e0:9[𝐶)𝑊) + 2𝐺))𝑆* − 2𝐺))𝐻)]. (172) 2280 

From EquaHon (166) and (171), we obtain the following equaHon.  2281 
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 −𝐶)𝑊) − 2𝐺))𝑆* + 2𝐺))𝐻) =
)
T
[− :$+

%
+ :&

%
+ 𝑖𝐶( + 𝑖𝐶)𝐻) 2282 

 		− S+C
+,
− 𝐶)𝑚𝑊) +

$̇+
%
]. (173) 2283 

Solving for 𝑊̇) in the above equaHon we get the following equaHons.  2284 

 $̇+
T%

= :$+
T%

− :&
T%

− :S4
T
− :S+2+

T
+ S+C

+,T
+ 2𝐺))𝐻) − 2𝐺))𝑆*  (174) 2285 

  2286 

 2287 

 $̇+
%
= :$+

%
− :&

%
− 𝑖𝐶( − 𝑖𝐶)𝐻) +

S+C
+,
+ 2𝑚𝐺))𝐻) − 2𝑚𝐺))𝑆*  (175) 2288 

  2289 

 2290 

 𝑊̇) = 𝑖𝑊) − 𝑖𝑔 − 𝑖𝑘𝐶( − 𝑖𝑘𝐶)𝐻) +
S+C%
+,

+ 2𝑚𝑘𝐺))𝐻) − 2𝑚𝑘𝐺))𝑆*  (176) 2291 

  2292 

 2293 

 𝑊̇) = 𝑖𝑊) + [2𝑚𝑘𝐺)) − 𝑖𝑘𝐶)]𝐻) + [−𝑖𝑔 − 𝑖𝑘𝐶( +
S+C%
+,

− 2𝑚𝑘𝐺))𝑆*] (177) 2294 

Likewise, the value for 𝐻̇) can be rewrimen as  2295 

 𝐻̇) =
(A0))$+

+,
+ C

+,
. (178) 2296 

Consequently, we now have to solve the two simultaneous differenHal equaHons ((177) and 2297 

(178)). Thus, by leong 𝑚 = (A0))
+,

, 𝑢 = 2𝑚𝑘𝐺)) − 𝑖𝑘𝐶), 𝑁 = −𝑖𝑔 − 𝑖𝑘𝐶( +
S+C%
+,

−2298 

2𝑚𝑘𝐺))𝑆*  and 𝑀 = C
+,

, we get the following system of differenHal equaHons. 2299 

 2300 

 𝑊̇) = 𝑖𝑊) + 𝑢 ⋅ 𝐻) + 𝑁. (179) 2301 

 𝐻̇) = 𝑚 ⋅𝑊) +𝑀. (180) 2302 

Puong the above system of differenHal equaHons in a 𝐷 operator format (where 𝐷 = 6
69

), and 2303 

solving for 𝑊) yields the following second order linear non-homogeneous differenHal 2304 

equaHon.  2305 

 [(𝐷' − 𝐷𝑖) − 𝑢 ⋅ 𝑚]𝑊) = 𝑢 ⋅ 𝑀. (181) 2306 

The parHcular soluHon of the above differenHal equaHon is given by: −j
T

 and the 2307 

characterisHc roots by 𝑦),' =
:±√:!E>!⋅T

'
. Furthermore, the steady state level water table is 2308 

given by  2309 
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 𝐻)∗ = [
:=>0B

!
] (182) 2310 

Hence, the soluHon for 𝑊)
∗(𝑡) and 𝐻)∗(𝑡) are given as follows, respecHvely.  2311 

 𝑊)
∗(𝑡) = 𝐴e9^+ + 𝐵e9^! − j

T
, (183) 2312 

   2313 

 𝐻)∗(𝑡) =
T⋅+
^+
e9^+ + T⋅.

^!
e9^! +

:=>0B

!
. (184) 2314 

Where 𝐴 and 𝐵 are obtained by imposing the iniHal condiHons. 2315 

 2316 

 𝐵 = ^!
T
[𝐻( −

'=
>0B

!
 2317 

 		−
[2#0

'=
>*7
# ]0[240

'=
>*7
# ][B!:#

[B+:#0[B!:#
]. (185) 2318 

   2319 

 𝐴 = ^+
T
[
[2#0

'=
>*7
# ]0[240

'=
>*7
# ][B!:#

[B+:#0[B!:#
]. (186) 2320 

Therefore, the funcHonal defined in (34) is verified to be a convergent integral. 2321 

 2322 

Appendix 10. Detailed solu#on of the Quotas system resolu#on  2323 

 2324 

The hamiltonian funcHon of the system (41), (42), (43), and (44) is given as follows 2325 

 2326 

 ℋ(𝑡,𝑊,𝐻, 𝜆) = −e0:9[$
!

'%
− &$

%
− (𝐶( + 𝐶)𝐻)𝑊 + 𝜃[ (/0))

(,"02#)!
 2327 

 		⋅ (𝑆* − 𝐻)' + 1]] + 𝜆 ⋅
[CE(A0))$]

+,
 (187) 2328 

EquaHon (187) can be rewrimen as follows. 2329 

 2330 

 ℋ(𝑡,𝑊,𝐻, 𝜆) = −e0:9[$
!

'%
− &$

%
− (𝐶( + 𝐶)𝐻)𝑊 + 𝐺))(𝑆* − 𝐻)' + 𝜃] 2331 

 		+𝜆 ⋅ [CE(A0))$]
+,

 (188) 2332 

Where 2333 

 2334 

 𝐺)) =
N(/0))
[,"02#]!

. (189) 2335 
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 2336 

Hence, the first order condiHons are as follows 2337 

 2338 

 Uℋ
U$

= −e0:9[$
%
− &

%
− 𝐶( − 𝐶)𝐻] + 𝜆[

(A0))
+,

] = 0. (190) 2339 

  2340 

 2341 

 𝜆̇ = − Uℋ
U2
. (191) 2342 

   2343 

 𝐻̇ = )
+,
[𝑅 + (𝛼 − 1)𝑊]. (192) 2344 

The transversality condiHon is given by lim9→;𝜆(𝑡) = 0. From EquaHon (190), we obtain the 2345 

value for the costate variable 𝜆 as follows.  2346 

 𝜆 = )
T
e0:9[$

%
− &

%
− 𝐶( − 𝐶)𝐻], (193) 2347 

where 𝑚 = (A0))
+,

. The derivaHve of 𝜆 with respect to 𝑡 is given by  2348 

 𝜆̇ = )
T
e0:9[− :$

%
+ :&

%
+ 𝑖𝐶( + 𝑖𝐶)𝐻 2349 

 		− S+C
+,
− 𝐶)𝑚𝑊 + $̇

%
]. (194) 2350 

The derivaHve of ℋ with respect to the water table height 𝐻 is given by  2351 

 − Uℋ
U2

= −e0:9[𝐶)𝑊 + 2𝐺))𝑆* − 2𝐺))𝐻]. (195) 2352 

From EquaHon (191) and (194), we obtain the following equaHon.  2353 

 −𝐶)𝑊 − 2𝐺))𝑆* + 2𝐺))𝐻 = )
T
[− :$

%
+ :&

%
+ 𝑖𝐶( + 𝑖𝐶)𝐻 2354 

 		− S+C
+,
− 𝐶)𝑚𝑊 + $̇

%
]. (196) 2355 

Solving for 𝑊̇ in the above equaHon we get the following equaHons.  2356 

 $̇
T%

= :$
T%

− :&
T%

− :S4
T
− :S+2

T
+ S+C

+,T
+ 2𝐺))𝐻 − 2𝐺))𝑆*  (197) 2357 

  2358 

 2359 

 $̇
%
= :$

%
− :&

%
− 𝑖𝐶( − 𝑖𝐶)𝐻 +

S+C
+,
+ 2𝑚𝐺))𝐻 − 2𝑚𝐺))𝑆*  (198) 2360 

  2361 

 2362 

 𝑊̇ = 𝑖𝑊 − 𝑖𝑔 − 𝑖𝑘𝐶( − 𝑖𝑘𝐶)𝐻 +
S+C%
+,

+ 2𝑚𝑘𝐺))𝐻 − 2𝑚𝑘𝐺))𝑆*  (199) 2363 
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  2364 

 2365 

 𝑊̇ = 𝑖𝑊 + [2𝑚𝑘𝐺)) − 𝑖𝑘𝐶)]𝐻 + [−𝑖𝑔 − 𝑖𝑘𝐶( +
S+C%
+,

− 2𝑚𝑘𝐺))𝑆*] (200) 2366 

Likewise, the value for 𝐻̇ can be rewrimen as  2367 

 𝐻̇ = (A0))$
+,

+ C
+,
. (201) 2368 

Consequently, we now have to solve the two simultaneous differenHal equaHons ((200) and 2369 

(201)). Thus, by leong 𝑚 = (A0))
+,

, 𝑢 = −2𝑚𝑘𝐺)) + 𝑖𝑘𝐶), 𝑁 = −𝑖𝑔 − 𝑖𝑘𝐶( +
S+C%
+,

−2370 

2𝑚𝑘𝐺))𝑆*  and 𝑀 = C
+,

, we get the following system of differenHal equaHons. 2371 

 2372 

 𝑊̇ = 𝑖𝑊 − 𝑢 ⋅ 𝐻 + 𝑁. (202) 2373 

 𝐻̇ = 𝑚 ⋅ 𝑊 +𝑀. (203) 2374 

Puong the above system of differenHal equaHons in a 𝐷 operator format (where 𝐷 = 6
69

), and 2375 

solving for 𝑊 yields the following second order linear non-homogeneous differenHal 2376 

equaHon.  2377 

 [(𝐷' − 𝐷𝑖) + 𝑢 ⋅ 𝑚]𝑊 = −𝑢 ⋅ 𝑀. (204) 2378 

  2379 

The parHcular soluHon of the above differenHal equaHon is given by: −j
T

 and the soluHon to 2380 

the homogeneous differenHal equaHon ([(𝐷' − 𝐷𝑖) + 𝑢 ⋅ 𝑚]𝑊 = 0) by  2381 

 𝑊(𝑡) = 𝐴(e9 +̀ + 𝐵(e9 !̀ , (205) 2382 

where 𝑟),' =
:±√:!0>!T

'
 are the characterisHc roots. The parameters 𝐴( and 𝐵( are constants 2383 

to be determined by imposing the iniHal condiHons. SubsHtuHng the right hand side (RHS) of 2384 

(205) for 𝑊(𝑡) in the homogenous DE (𝐻̇ = 𝑚 ⋅ 𝑊) and integraHng gives the soluHon for the 2385 

water table level 𝐻(𝑡) as follows.  2386 

 𝐻(𝑡) = T⋅+4
+̀
e9 +̀ + T⋅.4

!̀
e9 !̀ . (206) 2387 

Furthermore, the steady state level water table is given by  2388 

 𝐻∗ = [
0:=>EB

!
] (207) 2389 

Hence, the soluHon for 𝑊∗(𝑡) and 𝐻∗(𝑡) are given as follows, respecHvely.  2390 

 𝑊∗(𝑡) = 𝐴(e9 +̀ + 𝐵(e9 !̀ − j
T
, (208) 2391 
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   2392 

 𝐻∗(𝑡) = T⋅+4
+̀
e9 +̀ + T⋅.4

@!
e9 !̀ +

B0:=>
!
. (209) 2393 

Similarly to Gisser and Sanchez (1980) results, it is worth menHoning that −4𝑢𝑚 > 0 since 2394 

𝑘 < 0, 𝐶) < 0, 𝑖 > 0, 𝐴 > 0, 𝑆 > 0, 𝑆* > 0, 𝐻! > 0, 𝛿 > 0, 𝐺)) < 0, 𝐻( > 0, 𝜃 > 0, and 𝛼 <2395 

1 ⟹ (𝛼 − 1) < 0. This implies that 𝑟) > 𝑖 and 𝑟' < 0. Therefore, 𝑟' is the stable 2396 

characterisHc root. Likewise, similarly to Gisser and Sanchez (1980), we obtained that the 2397 

transversality condiHon is only saHsfied when 𝐴( = 0. By imposing the iniHal condiHons of 2398 

the sub problem (𝐻(𝑡() = 𝐻(), we obtain the constant 𝐵( as follows below.  2399 

 𝐵( = !̀
T
[𝐻( −

B0:=>
!
]. (210) 2400 

Therefore, the opHmal soluHons for 𝑊∗(𝑡) and 𝐻∗(𝑡) are given as follows below, respecHvely.  2401 

 𝑊∗(𝑡) = !̀
T
[𝐻( −

B0:=>
!
]e !̀9 − j

T
. (211) 2402 

   2403 

 𝐻∗(𝑡) = [𝐻( −
B0:=>
!
]e !̀9 +

B0:=>
!
. (212) 2404 

Let 𝑁 be equal to 𝑁(, then  2405 

 𝑊∗(𝑡) = !̀+,
A0)

[𝐻( −
B40:

(
)*+

!
]e !̀9 − C

A0)
, (213) 2406 

Where 𝑁( = −𝑖𝑔 − 𝑖𝑘𝐶( +
S+C%
+,

− 2𝑚𝑘𝐺))𝑆*. Using equaHon (213), we determine the value 2407 

of 𝑁( that saHsfies the condiHon 𝑊⋆(𝑡) ≤ 𝑊{ (𝑡). 2408 

 2409 

 !̀+,
A0)

[𝐻( −
B40:

(
)*+

!
]e !̀9 − C

A0)
≤ 𝑊{  (214) 2410 

 2411 

 2412 

 !̀+,
A0)

[𝐻( −
B40:

(
)*+

!
]e !̀9 ≤ $a (A0))EC

A0)
 (215) 2413 

 2414 

 2415 

 [𝐻( −
B40:

(
)*+

!
]e !̀9 ≤ $a (A0))EC

!̀+,
 (216) 2416 

 2417 

 2418 
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 [𝐻( −
B40:

(
)*+

!
] ≤ $a (A0))EC

!̀+,
e0 !̀9 (217) 2419 

 2420 

 2421 

 𝐻(𝑢 −
$a (A0))EC

!̀+,
e0 !̀9 ⋅ 𝑢 ≤ 𝑁( −

:C
A0)

 (218) 2422 

 2423 

 2424 

 𝐻(𝑢 −
$a (A0))EC

!̀+,
e0 !̀9 ⋅ 𝑢 + :C

A0)
≤ 𝑁( (219) 2425 

If we let the Lej Hand Side of (219) to be equal to 𝑁+(𝑡), we then obtain 2426 

 2427 

 𝑊⋆(𝑡) = }
!̀+,
A0)

[𝐻( −
B40:

(
)*+

!
]e !̀9 − C

A0)
				𝑁( ≥ 𝑁+(𝑡)

𝑊{ 				𝑁( < 𝑁+(𝑡)
 (220) 2428 

   2429 

 𝐻⋆(𝑡) = ~
[𝐻( −

B40:
(

)*+
!

]e !̀9 +
B40:

(
)*+

!
				𝑁( ≥ 𝑁+(𝑡)

[𝐻( −
B-(9)0:

(
)*+

!
]e !̀9 +

B-(9)0:
(

)*+
!

				𝑁( < 𝑁+(𝑡)
 (221) 2430 

Where 𝑟' =
:0D:!0>!)*+-.

'
, 𝑢 = −2𝑚𝑘𝐺)) + 𝑖𝑘𝐶), 𝐺)) =

N(/0))
[,"02#]!

, 𝑁( = −𝑖𝑔 − 𝑖𝑘𝐶( +
S+C%
+,

−2431 

2𝑚𝑘𝐺))𝑆*, and 𝑁+(𝑡) = 𝐻(𝑢 −
$a (A0))EC

!̀+,
e0 !̀9 ⋅ 𝑢 + :C

A0)
. 2432 

The condiHons to ensure that a maximum has been achieved have been verified. 2433 

 2434 

Appendix 11. Proof of Proposi#on 5. 2435 

 2436 

Take note that 𝑁( is just a composite constant and 𝑁+(𝑡) is the switching index or decision 2437 

variable that decides whether the quota binds (𝑁( < 𝑁+(𝑡)) or not (𝑁( ≥ 𝑁+(𝑡)). The quota 2438 

binds (binding quota) when farmers want to extract more than the imposed quota level but 2439 

their unconstrained groundwater extracHon opHmum level is forced down to the quota level 2440 

(𝑊{ ), which occurs when the policy constraint is acHve (𝑁( < 𝑁+(𝑡)). A non-binding quota 2441 

refers to the case when farmers unconstrained groundwater extracHon opHmum level is 2442 

already less than or equal to 𝑊{ , which occurs when the policy constraint is inacHve (𝑁( ≥2443 

𝑁+(𝑡)).Therefore, binding means the policy constraint is acHve while non-bing implies it is 2444 
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inacHve. In addiHon, the comparison between 𝑁+(𝑡) and 𝑁( tells us whether farmers are 2445 

constrained by the quota level at that point in Hme. 2446 

 2447 

At the beginning of the planning horizon (𝑡 = 0), if 𝑁+(0) < 𝑁(, the quota level does not bind 2448 

iniHally (although it could bind later if the dynamics push the system across the threshold). 2449 

Hence, we solve for 𝑁+(0) = 𝑁(, this gives us the criHcal quota level (𝑊{") where the system 2450 

is exactly on the boundary between binding and non binding at 𝑡 = 0. Thus, if you choose 𝑊{  2451 

above (or below) 𝑊{", then you start on the non-binding side (or on the binding side). The 2452 

quotas opHmal soluHons are as follows.  2453 

 𝑊⋆(𝑡) = }
!̀+,
A0)

[𝐻( −
B40:

(
)*+

!
]e !̀9 − C

A0)
				𝑁( ≥ 𝑁+(𝑡)

𝑊{ 				𝑁( < 𝑁+(𝑡)
 (222) 2454 

   2455 

 𝐻⋆(𝑡) = ~
[𝐻( −

B40:
(

)*+
!

]e !̀9 +
B40:

(
)*+

!
				𝑁( ≥ 𝑁+(𝑡)

[𝐻( −
B-(9)0:

(
)*+

!
]e !̀9 +

B-(9)0:
(

)*+
!

				𝑁( < 𝑁+(𝑡)
 (223) 2456 

Where 𝑟' =
:0D:!0>!)*+-.

'
, 𝑢 = −2𝑚𝑘𝐺)) + 𝑖𝑘𝐶), 𝐺)) =

N(/0))
[,"02#]!

, 𝑁( = −𝑖𝑔 − 𝑖𝑘𝐶( +
S+C%
+,

−2457 

2𝑚𝑘𝐺))𝑆*, and 𝑁+(𝑡) = 𝐻(𝑢 −
$a (A0))EC

!̀+,
e0 !̀9 ⋅ 𝑢 + :C

A0)
. From the opHmal soluHons, we get 2458 

that at 𝑡 = 0,  2459 

 𝑁+(0) = 𝐻(𝑢= −
$a (A0))EC

!̀+,
𝑢= + :C

A0)
 (224) 2460 

Seong 𝑁+(0) = 𝑁( and solving for 𝑊{ , we obtain the following expression.  2461 

 𝑊{" = !̀+,
A0)

(
24!nE

'(
)*+0B4
!n

) − :C
A0)

 (225) 2462 

The derivaHve of 𝑁+(𝑡) with respect to 𝑡 is given by the following expression.  2463 

 UB-(9)
U9

= !n
+,
(𝑊{ (𝛼 − 1) + 𝑅)e0 !̀9 (226) 2464 

The derivaHve above is posiHve since !n
+,
> 0, 𝑢= > 0 because −2𝑚𝑘𝐺)) + 𝑖𝑘𝐶) > 0 ⟹ 𝑖 >2465 

'TL++
S+

 since 'TL++
S+

< 0 and 𝑖 > 0 (𝑚 < 0, 𝐶) < 0, 𝑘 < 0, 𝐺)) < 0). The term (𝑊{ (𝛼 − 1) +2466 

𝑅) > 0 since (𝑊{ (𝛼 − 1) + 𝑅) > 0 ⟹ C
$a
> 𝛼 − 1 which is true because C

$a
> 0 and 𝛼 − 1 <2467 

0. Finally, the term e0 !̀9 ≥ 1 since 𝑟' < 0 and 𝑡 ≥ 0. The above analysis implies that 𝑁+(𝑡) is 2468 

strictly increasing. This implies that if 𝑁+(𝑡) is strictly increasing, then for any later Hme 𝑡 >2469 
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0, 𝑁+(𝑡) ≥ 𝑁+(0), which means that the gap between 𝑁( and 𝑁+(𝑡) can only widen (or stay 2470 

the same if the derivaHve was zero). This gap can never shrink. Therefore, if 𝑁( starts at Hme 2471 

𝑡 = 0 below 𝑁+(0), it must remain below 𝑁+(𝑡) for all 𝑡 ≥ 0. 2472 

 2473 

If the quota is binding, then 𝑊∗(𝑡) = 𝑊{  (𝑁( < 𝑁+(𝑡)). If the quota is not binding, then 2474 

𝑊∗(𝑡) < 𝑊{ . Therefore, if the system changes from binding to non binding at 𝑡 = 0 when 2475 

𝑊{ = 𝑊{", any 𝑊{ < 𝑊{"  implies the quota is binding, and any 𝑊{ ≥ 𝑊{"  implies the quota is non 2476 

binding at Hme 𝑡 = 0. Thus, if the quota is low enough (𝑊{ < 𝑊{"), then once 𝑁( < 𝑁+(0) hold, 2477 

it conHnues to hold forever. Thus, the system stays quota binding for the rest of the planning 2478 

period. If 𝑊{ ≥ 𝑊{", we have that 𝑁( ≥ 𝑁+(0) and 𝑁+(𝑡) might grow bigger than 𝑁( at a later 2479 

Hme 𝑡 > 0 since 𝑁+(𝑡) is strictly increasing. This means that the quota can bind at a later Hme 2480 

𝑡 > 0. 2481 

 2482 

Appendix 12. Proof of Proposi#on 6. 2483 

 2484 

Assume the quota is binding at 𝑡 = 0, that is 𝑁( < 𝑁+(0). The derivaHve of 𝑁+(𝑡) with respect 2485 

to 𝜃 is given by the following expression.  2486 

 UB-(9)
UN

= − '24T%(/0))
(,"02#)!

+ $a (A0))EC
+,

[*D!:

!̀

T%(/0))
(,"02#)!

 2487 

 	× (2 + !n9

'D:!0>()*+)-. !n
+ !n

' !̀D:!0>
()*+)
-. !n

) (227) 2488 

The derivaHve above is posiHve. The parameter 𝑢= > 0 because −2𝑚𝑘𝐺)) + 𝑖𝑘𝐶) > 0 ⟹ 𝑖 >2489 
'TL++
S+

 since 'TL++
S+

< 0 and 𝑖 > 0 (𝑚 < 0, 𝐶) < 0, 𝑘 < 0, 𝐺)) < 0). The first term above is 2490 

negaHve since 𝑚 < 0, 𝑘 < 0, 𝛿 − 1 < 0, and 𝐻( > 0. We also observe that $
a (A0))EC

+,
> 0 2491 

since term (𝑊{ (𝛼 − 1) + 𝑅) > 0 since (𝑊{ (𝛼 − 1) + 𝑅) > 0 ⟹ C
$a
> 𝛼 − 1 which is true 2492 

because C
$a
> 0 and 𝛼 − 1 < 0. Therefore, the factor outside the brackets of the second term 2493 

is negaHve since e0 !̀9 ≥ 1 and 𝑟' < 0. The second term inside the brackets is greater than or 2494 

equal to zero since 𝑢= > 0, 𝑡 ≥ 0, and �𝑖' − 4 (A0))
+,

𝑢= ≥ 0. The last term inside the brackets 2495 

is less than or equal to zero since 𝑢= > 0, 𝑟' < 0, and �𝑖' − 4 (A0))
+,

𝑢= ≥ 0. For the overall 2496 

derivaHve to be posiHve, the following inequality should be true.  2497 
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	− '24T%(A0))
(,"02#)!

+ $a (A0))EC
+,

[*D!:

!̀

T%(A0))
(,"02#)!

	× (2 + !n9

'D:!0>()*+)-. !n
+ !n

' !̀D:!0>
()*+)
-. !n

) > 02498 

 (228) 2499 

  2500 

 2501 

 ⟹ !n($a (A0))EC)[*D!:

'+, !̀
!D:!0>()*+)-. !n

> 𝐻( −
($a (A0))EC)[*D!:

!̀
(2 + !n9

'D:!0>()*+)-. !n
) (229) 2502 

  2503 

 2504 

 ⟹ e0 !̀9 > 𝐻(0)(
!n($a (A0))EC)

'+, !̀
!D:!0>()*+)-. !n

+ '($a (A0))EC)
+, !̀

				+ !n9($a (A0))EC)

'+, !̀D:!0>
()*+)
-. !n

) (230) 2505 

The Lej hand Side of the above inequality is negaHve if the following condiHon is true.  2506 

 	𝐻(0)(
!n($a (A0))EC)

'+, !̀
!D:!0>()*+)-. !n

+ '($a (A0))EC)
+, !̀

				+ !n9($a (A0))EC)

'+, !̀D:!0>
()*+)
-. !n

) < 0 (231) 2507 

  2508 

 2509 

 ⟹ !n

' !̀D:!0>
()*+)
-. !n

< −2 − !n9

'D:!0>()*+)-. !n
 (232) 2510 

  2511 

 2512 

 ⟹ 𝑢= < −4𝑟'�𝑖' − 4
(A0))
+,

𝑢= − 𝑢=𝑡𝑟' (233) 2513 

  2514 

 2515 

 ⟹ 𝑟' >
!n

0>D:!0>()*+)-. !n0!n9
 (234) 2516 

IntuiHvely, 𝑟' should be smaller in terms of magnitude compared to !n

0>D:!0>()*+)-. !n0!n9
 2517 

because it is equal to 
:0D:!0>()*+)-. !n

'
 where 𝑖 ∈ (0,1) and smaller negaHve values are bigger 2518 

than large negaHve values for all 𝑡. If 𝑡 = 0, the Right Hand Side reduces in terms of 2519 

magnitude. Hence the derivaHve is proved to be posiHve.  2520 

 2521 
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This means that for every 𝑡, a larger 𝜃 pushes 𝑁+(𝑡) upward. Next, we explain how the quota 2522 

binding phase is lengthened. Recall that 𝑁+(𝑡) is an increasing funcHon of Hme (as we derived 2523 

in the proof of ProposiHon 5) and 𝑁( is fixed. Quota binding phase ends at Hme 𝑡∗ where the 2524 

equality 𝑁( = 𝑁+(𝑡∗). If 𝜃 rises, the whole curve 𝑁+(𝑡) shijs upward. That is, at 𝑡 = 0, the 2525 

inequality 𝑁( < 𝑁+(0) sHll holds, but now the gap is bigger. Since the curve is above 𝑁( by a 2526 

bigger margin, it takes longer for 𝑁+(𝑡) to be equal to 𝑁( if it ever does. MathemaHcally, the 2527 

soluHon 𝑡∗ to 𝑁( = 𝑁+(𝑡∗) shijs to the right. Hence, our results is proved. 2528 

 2529 

Appendix 13. Proof of Proposi#on 7. 2530 

 2531 

When the quota is binding (𝑁( < 𝑁+(𝑡)) for 𝑡 > 0, the derivaHve of the water table level with 2532 

respect to the quota level is given by the following equaHon.  2533 

 U2∗(9)
U$a

= A0)

!̀+,
(1 − e0 !̀9) < 0, 𝑡 > 0, (235) 2534 

because e0 !̀9 > 1, (𝛼 − 1) < 0, 𝑟' < 0, and 𝐴𝑆 > 0. This means that every marginal 2535 

increase in 𝑊{  lowers the water table by a predictable amount for 𝑡 > 0. Economically, this 2536 

makes sense, if the quota level (𝑊{ ) is relaxed upward, farmers extract more, so the water 2537 

table (𝐻∗(𝑡)) falls (negaHve derivaHve). This yields a closed form condiHon, that to keep 2538 

𝐻∗(𝑡) ≥ 𝐻 o , 𝑡 > 0, 𝑗 = 1,2,3 (𝐻 o  represents the criHcal thresholds for the water table 2539 

height), it suffices to impose the following condiHon.  2540 

 𝑊{ = 𝑊{( + 		min9∈((,;){ !̀+,
)0A

⋅ 2
∗(9,$a4)02q∗

)0[*D!:
} = 𝑊{I . (236) 2541 

Where 𝑊{( and 𝐻 ∗ represent the quota level at 𝑡 = 0, and the the maximum of all criHcal 2542 

thresholds for the water table height, respecHvely. Thus, regulators can quanHtaHvely 2543 

determine the maximum allowable quota consistent with keeping the water table height 2544 

above any ecological threshold, i.e., 𝐻!, 𝐻" , 𝐻#. Take note that due to the complexity of the 2545 

minimisaHon expression in terms of our opHmal soluHon for the water table height, we could 2546 

not solve for the explicit 𝑊{I value. We just propose that maybe with numerical solvers, this 2547 

may be solved. 2548 

 2549 

Appendix 14. Detailed solu#on of the Packaging and sequencing resolu#on  2550 

 2551 

The opHmal soluHon for the third sub-problem on taxes (𝑆𝑃-∗) is given by  2552 



99 
 

 𝑊∗(𝑡) = 𝐷𝐴e9W+ + 𝐷𝐵e9W! − C
A0)

, (237) 2553 

   2554 

 𝐻∗(𝑡) = (A0))X+
+,W+

e9W+ + (A0))X.
+,W!

e9W! +
'(
)*+0BBB

!!!
. (238) 2555 

where 𝑧),' =
:±D:!E>⋅!!!⋅)*+-.

'
, 𝐺' =

FGHIJ
+,

, 𝐺Z =
N(405)
[2%02$]!

, 𝑢𝑢𝑢 = 2𝑚𝑘𝐺Z − 𝑖𝑘𝐶), 𝑁𝑁𝑁 =2556 

−𝑖𝑔 − 𝑖𝑘𝐶( − 𝑖𝑘𝐺'(1 − 𝛼) +
S+C%
+,

− 2𝑚𝑘𝐺Z𝐻#, and 2557 

 2558 

 𝐷𝐵 = W!+,
A0)

e0W!9$[𝐻" −
'(
)*+0BBB

!!!
		−

[2%0
'(
)*+*777

### ]0[2$0
'(
)*+*777

### ][8!(:%*:$)

[8+(:%*:$)0[8!(:%*:$)
]. (239) 2559 

   2560 

 𝐷𝐴 = W++,
A0)

[
[2%0

'(
)*+*777

### ]0[2$0
'(
)*+*777

### ][8!(:%*:$)

[8+:%0[8+:$<8!(:%*:$)
]. (240) 2561 

If we let 𝛽 = 0, it implies making 𝐺' = 0 in 𝑆𝑃-∗. The resulHng soluHon below gives us the 2562 

opHmal soluHon for the severe unhealthy phase under a quota restricHon. Take note that the 2563 

whole proof on 𝑆𝑃-∗ under taxes (Appendix 8) was analysed to ensure that leong 𝐺' = 0 in 2564 

𝑆𝑃-∗ is mathemaHcally correct. 2565 

 2566 

 𝑊∗(𝑡) = 𝐷𝐴2e9W+ + 𝐷𝐵2e9W! − C
A0)

, (241) 2567 

   2568 

 𝐻∗(𝑡) = (A0))X+'
+,W+

e9W+ + (A0))X.'
+,W!

e9W! +
'(
)*+0VV

!!!
. (242) 2569 

where 𝑧),' =
:±D:!E>⋅!!!⋅)*+-.

'
, 𝐺Z =

N(405)
[2%02$]!

, 𝑢𝑢𝑢 = 2𝑚𝑘𝐺Z − 𝑖𝑘𝐶), 𝑃𝑃 = −𝑖𝑔 − 𝑖𝑘𝐶( +2570 

S+C%
+,

− 2𝑚𝑘𝐺Z𝐻#, and 2571 

 2572 

 𝐷𝐵2 = W!+,
A0)

e0W!9$[𝐻" −
'(
)*+0VV

!!!
		−

[2%0
'(
)*+*??
### ]0[2$0

'(
)*+*??
### ][8!(:%*:$)

[8+(:%*:$)0[8!(:%*:$)
]. (243) 2573 

   2574 

 𝐷𝐴2 = W++,
A0)

[
[2%0

'(
)*+*??
### ]0[2$0

'(
)*+*??
### ][8!(:%*:$)

[8+:%0[8+:$<8!(:%*:$)
]. (244) 2575 

Using equaHon (244), we determine the value of 𝐷𝐴2 that saHsfies the condiHon 𝑊∗(𝑡) ≤2576 
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𝑊{ . 2577 

 2578 

 𝐷𝐴2e9W+ + 𝐷𝐵2e9W! − C
A0)

≤ 𝑊{  (245) 2579 

  2580 

 2581 

 𝐷𝐴2 ≤ [*:8+[$a (A0))EC]
A0)

− 𝐷𝐵2e9(W!0W+). (246) 2582 

If we let the Right Hand Side of (246) to be equal to 𝑁b(𝑡), and taking into consideraHons 2583 

that extracHon levels above 𝑊{  are subject to taxaHon, we then obtain 2584 

 2585 

 𝑊⋆(𝑡) = ~
𝐷𝐴2e9W+ + 𝐷𝐵2e9W! − C

A0)
				𝐷𝐴2 ≤ 𝑁b(𝑡)

𝐷𝐴e9W+ + 𝐷𝐵e9W! − C
A0)

				𝐷𝐴2 > 𝑁b(𝑡) (247) 2586 

   2587 

 𝐻⋆(𝑡) =

⎩
⎨

⎧(A0))X+'
+,W+

e9W+ + (A0))X.'
+,W!

e9W! +
'(
)*+0VV

!!!
				𝐷𝐴2 ≤ 𝑁b(𝑡)

(A0))X+
+,W+

e9W+ + (A0))X.
+,W!

e9W! +
'(
)*+0BBB

!!!
				𝐷𝐴2 > 𝑁b(𝑡)

 (248) 2588 

 Where 𝑧),' =
:±D:!E>⋅!!!⋅)*+-.

'
, 𝐺' =

FGHIJ
+,

, 𝐺Z =
N(405)
[2%02$]!

, 𝑢𝑢𝑢 = 2𝑚𝑘𝐺Z − 𝑖𝑘𝐶), 𝑁𝑁𝑁 =2589 

−𝑖𝑔 − 𝑖𝑘𝐶( − 𝑖𝑘𝐺'(1 − 𝛼) +
S+C%
+,

− 2𝑚𝑘𝐺Z𝐻#, 𝑃𝑃 = −𝑖𝑔 − 𝑖𝑘𝐶( +
S+C%
+,

− 2𝑚𝑘𝐺Z𝐻#, 2590 

𝑁b(𝑡) =
[*:8+[$a (A0))EC]

A0)
− 𝐷𝐵2e9(W!0W+), and 2591 

 2592 

 𝐷𝐵 = W!+,
A0)

e0W!9$[𝐻" −
'(
)*+0BBB

!!!
		−

[2%0
'(
)*+*777

### ]0[2$0
'(
)*+*777

### ][8!(:%*:$)

[8+(:%*:$)0[8!(:%*:$)
]. (249) 2593 

   2594 

 𝐷𝐴 = W++,
A0)

[
[2%0

'(
)*+*777

### ]0[2$0
'(
)*+*777

### ][8!(:%*:$)

[8+:%0[8+:$<8!(:%*:$)
]. (250) 2595 

  2596 

 2597 

 𝐷𝐵2 = W!+,
A0)

e0W!9$[𝐻" −
'(
)*+0VV

!!!
		−

[2%0
'(
)*+*??
### ]0[2$0

'(
)*+*??
### ][8!(:%*:$)

[8+(:%*:$)0[8!(:%*:$)
]. (251) 2598 

   2599 
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 𝐷𝐴2 = W++,
A0)

[
[2%0

'(
)*+*??
### ]0[2$0

'(
)*+*??
### ][8!(:%*:$)

[8+:%0[8+:$<8!(:%*:$)
]. (252) 2600 

Applying the same principle on 𝑆𝑃>∗ (Appendix 2) that we used on 𝑆𝑃-∗, we let 𝐺K = 𝐺- =2601 

𝐺> = 𝐺' = 0, 𝐺Q = −1, and 𝐺R = 1 to obtain the following opHmal soluHons for the criHcal 2602 

unhealthy phase under quota restricHons alone. 2603 

 2604 

 𝑊∗(𝑡) = c!+,<
A0)

[𝐻# −
'(
)*+0B+
!)

]ec!(909%) − C
A0)

, (253) 2605 

   2606 

 𝐻∗(𝑡) = [𝐻# −
'(
)*+0B+
!)

]ec!(909%) +
'(
)*+0B+
!)

, (254) 2607 

where, 𝑎' =
:0D:!E>!))*+,-.

'
 <0, 𝐺M =

N5
[2%020]!

, 𝑢1 = −𝑖𝑘𝐶) +
'T%L3
<

, and 𝑁) = −𝑖𝑔 − 𝑖𝑘𝐶( +2608 

%S+C
<+,

− 2𝑚𝑘𝐺M𝐻.. 2609 

 2610 

Using equaHon (254), we determine the value of 𝑁) that saHsfies the condiHon 𝑊∗(𝑡) ≤ 𝑊{ .  2611 

 c!+,<
A0)

[𝐻# −
'(
)*+0B+
!)

]ec!(909%) − C
A0)

≤ 𝑊{  (255) 2612 

  2613 

 2614 

 𝑁) ≤
!)[$a (A0))EC]

c!+,<
e0c!(909%) − 𝐻#𝑢1 +

:C
A0)

 (256) 2615 

If we let the Right Hand Side of (256) to be equal to 𝑁.(𝑡), then we obtain  2616 

 𝑊⋆(𝑡) = }
c!+,<
A0)

[𝐻# −
'(
)*+0B+
!)

]ec!(909%) − C
A0)

				𝑁) ≤ 𝑁.(𝑡)

𝑊{ 				𝑁) > 𝑁.(𝑡)
 (257) 2617 

   2618 

 𝐻⋆(𝑡) = ~
[𝐻# −

'(
)*+0B+
!)

]ec!(909%) +
'(
)*+0B+
!)

				𝑁) ≤ 𝑁.(𝑡)

[𝐻# −
'(
)*+0B0(9)

!)
]ec!(909%) +

'(
)*+0B0(9)

!)
				𝑁) > 𝑁.(𝑡)

 (258) 2619 

 where, 𝑎' =
:0D:!E>!))*+,-.

'
 <0, 𝐺M =

N5
[2%020]!

, 𝑢1 = −𝑖𝑘𝐶) +
'T%L3
<

, 𝑁) = −𝑖𝑔 − 𝑖𝑘𝐶( +2620 

%S+C
<+,

− 2𝑚𝑘𝐺M𝐻., and 𝑁.(𝑡) =
!)[$a (A0))EC]

c!+,<
e0c!(909%) − 𝐻#𝑢1 +

:C
A0)

 2621 

Therefore, the final soluHon is given by  2622 
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 𝑊∗(𝑡) =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝐴e

9^+ + 𝐵e9^! − C
A0)

, if	𝑡 ≤ 𝑡!,

𝐸𝐴e9\+ + 𝐸𝐵e9\! − C
A0)

, if	𝑡! < 𝑡 ≤ 𝑡" ,

𝐷𝐴2e9W+ + 𝐷𝐵2e9W! − C
A0)

, if𝑡" < 𝑡 ≤ 𝑡# 	&	𝐷𝐴2 ≤ 𝑁b(𝑡),

𝐷𝐴e9W+ + 𝐷𝐵e9W! − C
A0)

, if	𝑡" < 𝑡 ≤ 𝑡# 	&	𝐷𝐴2 > 𝑁b(𝑡),

c!+,<
A0)

[𝐻# −
'(
)*+0B+
!)

]ec!(909%) − C
A0)

, if	𝑡 > 𝑡# 	&	𝑁) ≤ 𝑁.(𝑡),

𝑊{ , if	𝑡 > 𝑡# 	&	𝑁) > 𝑁.(𝑡).

2623 

 (259) 2624 

  2625 

 2626 

𝐻∗(𝑡) =

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧(A0))+

+,^+
e9^+ + (A0)).

+,^!
e9^! +

'(
)*+0B

!
, if	𝑡 ≤ 𝑡!,

(A0))]+
+,\+

e9\+ + (A0))].
+,\!

e9\! +
'(
)*+0VVV

666
, if	𝑡! < 𝑡 ≤ 𝑡" ,

(A0))X+'
+,W+

e9W+ + (��0))X.'
+,W!

e9W! +
'(
)*+0VV

!!!
, if	𝑡" < 𝑡 ≤ 𝑡# 	&	𝐷𝐴2 ≤ 𝑁b(𝑡),

(A0))X+
+,W+

e9W+ + (A0))X.
+,W!

e9W! +
'(
)*+0BBB

!!!
, if	𝑡" < 𝑡 ≤ 𝑡# 	&	𝐷𝐴2 > 𝑁b(𝑡),

[𝐻# −
'(
)*+0B+
!)

]ec!(909%) +
'(
)*+0B+
!)

, if	𝑡 > 𝑡# 	&	𝑁) ≤ 𝑁.(𝑡),

[𝐻# −
'(
)*+0B0(9)

!)
]ec!(909%) +

'(
)*+0B0(9)

!)
, if	𝑡 > 𝑡# 	&	𝑁) > 𝑁.(𝑡).

2627 

 (260) 2628 

  2629 

Where 𝑦),' =
:±D:!E>!)*+-.

'
, 𝑢 = 2𝑚𝑘𝐺)) − 𝑖𝑘𝐶), 𝑁 = −𝑖𝑔 − 𝑖𝑘𝐶( +

S+C%
+,

− 2𝑚𝑘𝐺))𝑆*, 𝐺)) =2630 

N(/0))
[,"02#]!

, and 2631 

 2632 

 𝐵 = ^!+,
A0)

[𝐻( −
'(
)*+0B

!
		−

[2#0
'(
)*+*7

# ]0[240
'(
)*+*7

# ][B!:#

[B+:#0[B!:#
], (261) 2633 

   2634 

 𝐴 = ^++,
A0)

[
[2#0

'(
)*+*7

# ]0[240
'(
)*+*7

# ][B!:#

[B+:#0[B!:#
]. (262) 2635 

  2636 

 𝑞),' =
:±D:!E>⋅666⋅)*+-.

'
, 𝐺)( =

N(/04)
[2#02$]!

, 𝑑𝑑𝑑 = 2𝑚𝑘𝐺)( − 𝑖𝑘𝐶), 𝑃𝑃𝑃 = −𝑖𝑔 − 𝑖𝑘𝐶( +
S+C%
+,

−2637 
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2𝑚𝑘𝐺)(𝐻", and 2638 

 2639 

 𝐸𝐵 = \!
T
e0\!9#[𝐻! −

'=
>0VVV

666
		−

[2$0
'=
>*???
@@@ ]0[2#0

'=
>*???
@@@ ][A!(:$*:#)

[A+(:$*:#)0[A!(:$*:#)
]. (263) 2640 

   2641 

 𝐸𝐴 = \+
T
[
[2$0

'=
>*???
@@@ ]0[2#0

'=
>*???
@@@ ][A!(:$*:#)

[A+:$0[A+:#<A!(:$*:#)
]. (264) 2642 

  2643 

 𝑧),' =
:±D:!E>⋅!!!⋅)*+-.

'
, 𝐺' =

FGHIJ
+,

, 𝐺Z =
N(405)
[2%02$]!

, 𝑢𝑢𝑢 = 2𝑚𝑘𝐺Z − 𝑖𝑘𝐶), 𝑁𝑁𝑁 = −𝑖𝑔 −2644 

𝑖𝑘𝐶( − 𝑖𝑘𝐺'(1 − 𝛼) +
S+C%
+,

− 2𝑚𝑘𝐺Z𝐻#, 𝑃𝑃 = −𝑖𝑔 − 𝑖𝑘𝐶( +
S+C%
+,

− 2𝑚𝑘𝐺Z𝐻#, 𝑁b(𝑡) =2645 

[*:8+[$a (A0))EC]
A0)

− 𝐷𝐵2e9(W!0W+), and 2646 

 2647 

 𝐷𝐵 = W!+,
A0)

e0W!9$[𝐻" −
'(
)*+0BBB

!!!
		−

[2%0
'(
)*+*777

### ]0[2$0
'(
)*+*777

### ][8!(:%*:$)

[8+(:%*:$)0[8!(:%*:$)
]. (265) 2648 

   2649 

 𝐷𝐴 = W++,
A0)

[
[2%0

'(
)*+*777

### ]0[2$0
'(
)*+*777

### ][8!(:%*:$)

[8+:%0[8+:$<8!(:%*:$)
]. (266) 2650 

  2651 

 2652 

 𝐷𝐵2 = W!+,
A0)

e0W!9$[𝐻" −
'(
)*+0VV

!!!
		−

[2%0
'(
)*+*??
### ]0[2$0

'(
)*+*??
### ][8!(:%*:$)

[8+(:%*:$)0[8!(:%*:$)
]. (267) 2653 

   2654 

 𝐷𝐴2 = W++,
A0)

[
[2%0

'(
)*+*??
### ]0[2$0

'(
)*+*??
### ][8!(:%*:$)

[8+:%0[8+:$<8!(:%*:$)
]. (268) 2655 

 2656 

𝑎' =
:0D:!E>!))*+,-.

'
 <0, 𝐺M =

N5
[2%020]!

, 𝑢1 = −𝑖𝑘𝐶) +
'T%L3
<

, 𝑁) = −𝑖𝑔 − 𝑖𝑘𝐶( +
%S+C
<+,

−2657 

2𝑚𝑘𝐺M𝐻., and 𝑁.(𝑡) =
!)[$a (A0))EC]

c!+,<
e0c!(909%) − 𝐻#𝑢1 +

:C
A0)

. Therefore, the opHmal 2658 

soluHons are proved. 2659 

 2660 

 2661 
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Appendix 15. Proof of Proposi#on 8. 2662 

 2663 

Take note that 𝑁) is just a composite constant and 𝑁.(𝑡) is the decision variable that decides 2664 

whether the quota binds (𝑁) > 𝑁.(𝑡)) or not (𝑁) ≤ 𝑁.(𝑡)). The quota binds (binding quota) 2665 

when farmers want to extract more than the imposed quota level but their unconstrained 2666 

groundwater extracHon opHmum level is forced down to the quota level (𝑊{ ), which occurs 2667 

when the policy constraint is acHve (𝑁) > 𝑁.(𝑡)). A non-binding quota refers to the case 2668 

when farmers unconstrained groundwater extracHon opHmum level is already less than or 2669 

equal to 𝑊{ , which occurs when the policy constraint is inacHve (𝑁) ≤ 𝑁.(𝑡)).Therefore, 2670 

binding means the policy constraint is acHve while non-bing implies it is inacHve. In addiHon, 2671 

the comparison between 𝑁.(𝑡) and 𝑁) tells us whether farmers are constrained by the quota 2672 

level at that point in Hme. 2673 

 2674 

At the beginning of the criHcally unhealthy phase (𝑡 = 𝑇), if 𝑁.(𝑇) ≥ 𝑁), the quota level does 2675 

not bind iniHally (although it could bind later if the dynamics push the system across the 2676 

threshold). Hence, we solve for 𝑁.(𝑇) = 𝑁), this gives us the criHcal quota level (𝑊{") where 2677 

the system is exactly on the boundary between binding and non binding at 𝑡 = 𝑇. Thus, if you 2678 

choose 𝑊{  above (or below) 𝑊{", then you start on the non-binding side (or on the binding 2679 

side). The opHmal soluHons for the criHcally unhealthy phase under packaging and sequencing 2680 

of taxes and quotas are as follows.  2681 

 𝑊⋆(𝑡) = }
c!+,<
A0)

[𝐻# −
'(
)*+0B+
!)

]ec!(909%) − C
A0)

, if	𝑡 > 𝑡# 	&	𝑁) ≤ 𝑁.(𝑡),

𝑊{ , if	𝑡 > 𝑡# 	&	𝑁) > 𝑁.(𝑡).
 (269) 2682 

   2683 

 𝐻⋆(𝑡) = ~
[𝐻# −

'(
)*+0B+
!)

]ec!(909%) +
'(
)*+0B+
!)

, if	𝑡 > 𝑡# 	&	𝑁) ≤ 𝑁.(𝑡),

[𝐻# −
'(
)*+0B0(9)

!)
]ec!(909%) +

'(
)*+0B0(9)

!)
, if	𝑡 > 𝑡# 	&	𝑁) > 𝑁.(𝑡).

 (270) 2684 

where, 𝑎' =
:0D:!E>!))*+,-.

'
 <0, 𝐺M =

N5
[2%020]!

, 𝑢1 = −𝑖𝑘𝐶) +
'T%L3
<

, 𝑁) = −𝑖𝑔 − 𝑖𝑘𝐶( +2685 

%S+C
<+,

− 2𝑚𝑘𝐺M𝐻., and 𝑁.(𝑡) =
!)[$a (A0))EC]

c!+,<
e0c!(909%) − 𝐻#𝑢1 +

:C
A0)

. From the opHmal 2686 

soluHons, we get that at 𝑡 = 𝑇,  2687 
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 𝑁.(𝑇) = −𝐻#𝑢1 +
$a (A0))EC
c!+,<

𝑢1 + :C
A0)

 (271) 2688 

Seong 𝑁.(𝑇) = 𝑁) and solving for 𝑊{ , we obtain the following expression.  2689 

 𝑊{" =
c!+,<
(A0))!)

(𝑁) + 𝐻#𝑢1 −
:C
A0)

) − C
A0)

 (272) 2690 

The derivaHve of 𝑁.(𝑡) with respect to 𝑡 is given by the following expression.  2691 

 UB0(9)
U9

= !)
+,<

(𝑊{ (𝛼 − 1) + 𝑅)e0c!(909%) (273) 2692 

The derivaHve above is posiHve since !)
+,<

> 0, 𝑢1 > 0 and 𝐴𝑆Ω > 0. The term (𝑊{ (𝛼 − 1) +2693 

𝑅) > 0 since (𝑊{ (𝛼 − 1) + 𝑅) > 0 ⟹ C
$a
> 𝛼 − 1 which is true because C

$a
> 0 and 𝛼 − 1 <2694 

0. Finally, the term e0c!(909%) ≥ 1 since 𝑎' < 0 and (𝑡 − 𝑡#) ≥ 0. The above analysis implies 2695 

that 𝑁.(𝑡) is strictly increasing. This implies that if 𝑁.(𝑡) is strictly increasing, then for any 2696 

later Hme 𝑡 > 𝑇, 𝑁.(𝑡) ≥ 𝑁.(𝑇), which means that the gap between 𝑁) and 𝑁.(𝑡) can only 2697 

lessen/reduce (or stay the same if the derivaHve was zero). This gap can never widen. 2698 

Therefore, if 𝑁) starts at Hme 𝑡 = 𝑇 above 𝑁.(𝑇), 𝑁.(𝑡) will surpass 𝑁) at some finite Hme 2699 

𝑡 > 𝑇, and the system will exit into the non-binding quota phase unHl the end of the planning 2700 

period. 2701 

 2702 

If the quota is binding, then 𝑊∗(𝑡) = 𝑊{  (𝑁) > 𝑁.(𝑡)). If the quota is not binding, then 2703 

𝑊∗(𝑡) < 𝑊{ . Therefore, if the system changes from binding to non binding at 𝑡 = 𝑇 when 2704 

𝑊{ = 𝑊{", any 𝑊{ < 𝑊{"  implies the quota is binding, and any 𝑊{ ≥ 𝑊{"  implies the quota is non 2705 

binding at Hme 𝑡 = 𝑇. Thus, if the quota is low enough (𝑊{ < 𝑊{"), then once 𝑁) > 𝑁.(𝑇) 2706 

hold, it only holds for a limited duraHon. Thus, the system transiHons into the non-binding 2707 

quota phase unHl the end of the planning period. If 𝑊{ ≥ 𝑊{", we have that 𝑁) ≤ 𝑁.(𝑇) and 2708 

𝑁.(𝑡) will conHnue growing higher than 𝑁) unHl 𝑡 = ∞ because 𝑁.(𝑡) is strictly increasing. 2709 

This means that the quota stays non-binding unHl the end of the planning period. 2710 

 2711 

Appendix 16. Proof of Proposi#on 9. 2712 

 2713 

When the quota is binding (𝑁) > 𝑁.(𝑡)) for 𝑡 > 𝑇, the derivaHve of the water table level with 2714 

respect to the quota level is given by the following equaHon.  2715 

 U2∗(9)
U$a

= A0)
c!+,<

(1 − e0c!(909%)) < 0, 𝑡 > 𝑇, (274) 2716 
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because e0c!(909%) > 1, (𝛼 − 1) < 0, 𝑎' < 0, and 𝐴𝑆Ω > 0. This means that every marginal 2717 

increase in 𝑊{  lowers the water table by a predictable amount for 𝑡 > 𝑇. Economically, this 2718 

makes sense, if the quota level (𝑊{ ) is relaxed upward, farmers extract more, so the water 2719 

table (𝐻∗(𝑡)) falls (negaHve derivaHve). This yields a closed form condiHon, that to keep 2720 

𝐻∗(𝑡) > 𝐻. (𝐻. represents the aquifer system bomom), it suffices to impose the following 2721 

condiHon.  2722 

 𝑊{ = 𝑊{# + 		min9∈(#,;){
c!+,<
)0A

⋅ 2
∗(9,$a %)020

)0[*E!(:*:%)
} = 𝑊{% . (275) 2723 

Where 𝑊{#  represents the quota level at 𝑡 = 𝑡#. Thus, regulators can quanHtaHvely determine 2724 

the maximum allowable quota consistent with keeping the water table height above the 2725 

aquifer bomom and prevent GDEs from disappearing. The GDEs collapse when 𝐻∗(𝑡) = 𝐻., 2726 

as assumed in the derivaHon of our GDEs health status funcHonal. Likewise, take note that 2727 

due to the complexity of the minimisaHon expression in terms of our opHmal soluHon for the 2728 

water table height, we could also not solve for the explicit 𝑊{% value. We just propose that 2729 

maybe with numerical solvers, this may be solved. 2730 

 2731 

Appendix 17. Proof of Proposi#on 10. 2732 

 2733 

Assume the quota is binding at 𝑡 = 𝑇, that is 𝑁) > 𝑁.(𝑇). The derivaHve of 𝑁.(𝑡) with 2734 

respect to 𝜃 is given by the following expression.  2735 

 UB-(9)
UN

= '2%T%5
(2%020)!

− $a (A0))EC
+,<

[*E!(:*:%)

c!

T%5
(2%020)!

 2736 

 	× (−2 − !)9

'D:!E>()*+)-., !)
− !)

'c!D:!E>
()*+)
-., !)

) (276) 2737 

The derivaHve above is posiHve. The parameter 𝑢1 > 0 because 'T%L3
<

− 𝑖𝑘𝐶) > 0 ⟹ 𝑖 <2738 

'TL3
S+<

 and 𝑖 ∈ (0,1), 'TL3
<S+

> 0 since 𝑚 < 0, 𝐶) < 0, 𝑘 < 0, 𝐺M > 0, 𝛾 > 0). The first term 2739 

above is posiHve since 𝑚 < 0, 𝑘 < 0, 𝛾 > 0, and 𝐻# > 0. We also observe that $
a (A0))EC

+,<
> 0 2740 

since term (𝑊{ (𝛼 − 1) + 𝑅) > 0 since (𝑊{ (𝛼 − 1) + 𝑅) > 0 ⟹ C
$a
> 𝛼 − 1 which is true 2741 

because C
$a
> 0 and 𝛼 − 1 < 0. Therefore, the factor outside the brackets of the second term 2742 

is posiHve since e0c!(909%) ≥ 1 and 𝑎' < 0. The second term inside the brackets is negaHve 2743 

since 𝑢1 > 0, 𝑡 ≥ 𝑇, and �𝑖' + 4 (A0))
+,<

𝑢1 ≥ 0. The last term inside the brackets is posiHve 2744 
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since 𝑢1 > 0, 𝑎' < 0, and �𝑖' + 4 (A0))
+,<

𝑢1 ≥ 0. For the overall derivaHve to be posiHve, the 2745 

following inequality should be true.  2746 

 	−2 − !)9

'D:!E>()*+)-., !)
− !)

'c!D:!E>
()*+)
-., !)

> 0 (277) 2747 

  2748 

 2749 

 ⟹− !)

'c!D:!E>
()*+)
-., !)

> 2 + !)9

'D:!E>()*+)-., !)
 (278) 2750 

  2751 

 2752 

 ⟹ 𝑎' < − !)

>D:!E>()*+)-., !)E!)9
 (279) 2753 

IntuiHvely, 𝑎' should be bigger in terms of magnitude compared to !)

>D:!E>()*+)-., !)E!)9
 because 2754 

it is equal to 
:0D:!E>()*+)-., !)

'
 where 𝑖 ∈ (0,1) and bigger negaHve values are smaller than small 2755 

negaHve values for all 𝑡. If 𝑡 = 𝑇, the Right Hand Side reduces in terms of magnitude. Hence 2756 

the derivaHve is proved to be posiHve.  2757 

 2758 

This means that for every 𝑡, a larger 𝜃 pushes 𝑁.(𝑡) upward. Next, we explain how the quota 2759 

binding phase is shortened. Recall that 𝑁.(𝑡) is an increasing funcHon of Hme (as we derived 2760 

in the proof of ProposiHon 8) and 𝑁) is fixed. Quota binding phase ends at Hme 𝑡∗ where the 2761 

equality 𝑁) = 𝑁.(𝑡∗). If 𝜃 rises, the whole curve 𝑁.(𝑡) shijs upward. That is, at 𝑡 = 𝑇, the 2762 

inequality 𝑁) > 𝑁.(𝑇) sHll holds, but now the gap is smaller. Since the curve is below 𝑁) by 2763 

a smaller margin, it takes a short Hme for 𝑁.(𝑡) to be equal to 𝑁). MathemaHcally, the 2764 

soluHon 𝑡∗ to 𝑁) = 𝑁.(𝑡∗) shijs to the lej. Hence, our results is proved. 2765 

 2766 

Appendix 18. Detailed solu#on when there is LS but no policy interven#ons  2767 

 2768 

The hamiltonian funcHon for phase four of the system (55), (56), (57) is given as follows 2769 

 2770 
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 ℋ>(𝑡,𝑊>, 𝐻>, 𝜆>) = −e0:9[$&
!

'%
− &$&

%
− (𝐶( + 𝐶)𝐻>)𝑊> +2771 

𝜃[ 5
(()EGHIJ)(2%020))!

 2772 

 ⋅ (𝐻> + 𝜂𝜀𝑏𝜓(𝐻> − 𝐻") − 𝐻. − 𝜂𝜀𝑏𝜓(𝐻. − 𝐻"))']] 2773 

 		+𝜆> ⋅
[CE(A0))$&]

<⋅+,
 (280) 2774 

EquaHon (280) can be rewrimen as follows. 2775 

 2776 

 ℋ>(𝑡,𝑊>, 𝐻>, 𝜆>) = −e0:9[$&
!

'%
− &$&

%
− (𝐶( + 𝐶)𝐻>)𝑊> + 𝐺M(𝐻> − 𝐻.)'] 2777 

 		+𝜆> ⋅
[CE(A0))$&]

<⋅+,
 (281) 2778 

Where  2779 

 𝐺M =
N5

[2%020]!
. (282) 2780 

 2781 

Hence, the first order condiHons are as follows 2782 

 2783 

 Uℋ&
U$&

= −e0:9[$&
%
− &

%
− 𝐶( − 𝐶)𝐻>] + 𝜆>[

(A0))
<⋅+,

] = 0. (283) 2784 

  2785 

 2786 

 𝜆̇> = − Uℋ&
U2&

. (284) 2787 

  2788 

 𝐻̇> =
)

<⋅+,
[𝑅 + (𝛼 − 1)𝑊>]. (285) 2789 

The transversality condiHon is given by lim9→;𝜆>(𝑡) = 0. From EquaHon (283), we obtain 2790 

the value for the costate variable 𝜆> as follows.  2791 

 𝜆> =
<
T
e0:9[$&

%
− &

%
− 𝐶( − 𝐶)𝐻>], (286) 2792 

where 𝑚 = (A0))
+,

. The derivaHve of 𝜆> with respect to 𝑡 is given by  2793 

 𝜆̇> =
<
T
e0:9[− :$&

%
+ :&

%
+ 𝑖𝐶( + 𝑖𝐶)𝐻> −

S+C
<⋅+,

− S+T
<
𝑊> +

$̇&
%
]. (287) 2794 

 The derivaHve of ℋ> with respect to the water table height 𝐻> is given by  2795 

 − Uℋ&
U2&

= −e0:9[𝐶)𝑊> + 2𝐺M𝐻. − 2𝐺M𝐻>]. (288) 2796 

From EquaHon (288) and (287), we obtain the following equaHon.  2797 
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 −𝐶)𝑊> − 2𝐺M𝐻. + 2𝐺M𝐻> =
<
T
[− :$&

%
+ :&

%
+ 𝑖𝐶( + 𝑖𝐶)𝐻> 2798 

 		− S+C
<⋅+,

− S+T
<
𝑊> +

$̇&
%
]. (289) 2799 

Solving for 𝑊̇> in the above equaHon we get the following equaHons.  2800 

 <$̇&
T%

= <:$&
T%

− <S+:2&
T

+ 2𝐺M𝐻> −
<:&
T%

− <:S4
T

 2801 

 			+ S+C
+,T<

− 2𝐺M𝐻. (290) 2802 

  2803 

 2804 

 $̇&
%
= :$&

%
− 𝐶)𝑖𝐻> +

'TL32&
<

− :&
%
− 𝑖𝐶( 2805 

 			+ S+C
+,<

− 'TL320
<

 (291) 2806 

  2807 

 2808 

 𝑊̇> = 𝑖𝑊> − 𝑖𝑘𝐶)𝐻> +
'T%L32&

<
− 𝑖𝑔 − 𝑖𝑘𝐶( +

%S+C
<+,

 2809 

 			−2𝑚𝑘𝐺M𝐻. (292) 2810 

  2811 

 2812 

 𝑊̇> = 𝑖𝑊> + [−𝑖𝑘𝐶) +
'T%L3
<

]𝐻> + [−𝑖𝑔 − 𝑖𝑘𝐶( +
%S+C
<+,

 2813 

 			−2𝑚𝑘𝐺M𝐻.] (293) 2814 

Likewise, the value for 𝐻̇> can be rewrimen as  2815 

 𝐻̇> =
(A0))$&
<⋅+,

+ C
<⋅+,

. (294) 2816 

Consequently, we now have to solve the two simultaneous differenHal equaHons ((293) and 2817 

(294)). Thus, by leong 𝑚𝑚 = (A0))
<+,

, 𝑎 = −𝑖𝑘𝐶) +
'T%L3
<

, 𝑁 = −𝑖𝑔 − 𝑖𝑘𝐶( +
%S+C
<+,

−2818 

2𝑚𝑘𝐺M𝐻. and 𝑀𝑀 = C
<+,

, we get the following system of differenHal equaHons. 2819 

 2820 

 𝑊̇> = 𝑖𝑊> + 𝑎 ⋅ 𝐻> + 𝑁. (295) 2821 

 𝐻̇> = 𝑚𝑚 ⋅𝑊> +𝑀𝑀. (296) 2822 

Puong the above system of differenHal equaHons in a 𝐷 operator format (where 𝐷 = 6
69

), and 2823 

solving for 𝑊> yields the following second order linear non-homogeneous differenHal 2824 

equaHon.  2825 
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 [(𝐷' − 𝐷𝑖) − 𝑎 ⋅ 𝑚𝑚]𝑊> = 𝑎 ⋅ 𝑀𝑀. (297) 2826 

The parHcular soluHon of the above differenHal equaHon is given by: − jj
TT

 and the soluHon 2827 

to the homogeneous differenHal equaHon ([(𝐷' − 𝐷𝑖) − 𝑎 ⋅ 𝑚𝑚]𝑊> = 0) by  2828 

 𝑊-(𝑡) = 𝐾𝐴e9d+ + 𝐾𝐵e9d! , (298) 2829 

where 𝑣),' =
:±√:!E>c⋅TT

'
 are the characterisHc roots. The parameters 𝐾𝐴 and 𝐾𝐵 are 2830 

constants to be determined by imposing the iniHal condiHons. SubsHtuHng the right hand side 2831 

(RHS) of (298) for 𝑊>(𝑡) in the homogenous DE (𝐻̇> = 𝑚𝑚 ⋅𝑊>) and integraHng gives the 2832 

soluHon for the water table level 𝐻>(𝑡) as follows.  2833 

 𝐻>(𝑡) =
TT⋅b+
d+

e9d+ + TT⋅b.
d!

e9d! . (299) 2834 

Furthermore, the steady state level water table is given by  2835 

 𝐻>∗ = [
:==>>0B

c
] (300) 2836 

Hence, the soluHon for 𝑊>
∗(𝑡) and 𝐻>∗(𝑡) are given as follows, respecHvely.  2837 

 𝑊>
∗(𝑡) = 𝐾𝐴e9d+ + 𝐾𝐵e9d! − jj

TT
, (301) 2838 

   2839 

 𝐻>∗(𝑡) =
TT⋅b+
d+

e9d+ + TT⋅b.
d!

e9d! +
:==>>0B

c
. (302) 2840 

Similarly to Gisser and Sanchez (1980) results, it is worth menHoning that +4𝑢𝑢𝑚𝑚 > 0 since 2841 

𝑘 < 0, 𝐶) < 0, 𝑖 > 0, 𝐴 > 0, 𝑆 > 0, Ω > 0, 𝐻. > 0, 𝐻# > 0, 𝜓 > 0, 𝜃 > 0, 𝛾 > 0, 𝜂 > 0, 𝜀 >2842 

0, 𝑏 > 0, 𝐺M > 0, 𝛼 < 1 ⟹ (𝛼 − 1) < 0 or (1 − 𝛼) > 0, and 𝑚 < 0. Furthermore, we 2843 

observe that − :%S+(A0))
<+,

> 0 and 'T%L3(A0))
<!+,

< 0. It can also be proved that − :%S+(A0))
<+,

>2844 

'T%L3(A0))
<!+,

. Hence, +4𝑎 ⋅ 𝑚𝑚 = 4[− :%S+(A0))
<+,

+ 'T%L3(A0))
<!+,

] > 0. This implies that 𝑣) > 𝑖 2845 

and 𝑣' < 0. Therefore, 𝑣' is the stable characterisHc root. Likewise, similarly to Gisser and 2846 

Sanchez (1980), we obtained that the transversality condiHon is only saHsfied when 𝐾𝐴 = 0. 2847 

By imposing the iniHal condiHons of the sub problem (𝐻>(𝑡#) = 𝐻#), we obtain the constant 2848 

𝐾𝐵 as follows below.  2849 

 𝐾𝐵 = d!
TT

[𝐻# −
:==>>0B

c
]e0d!9% . (303) 2850 

Therefore, the opHmal soluHons for 𝑊>
∗(𝑡) and 𝐻>∗(𝑡) are given as follows below, respecHvely.  2851 

 𝑊>
∗(𝑡) = d!

TT
[𝐻# −

:==>>0B

c
]ed!(909%) − jj

TT
. (304) 2852 
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   2853 

 𝐻>∗(𝑡) = [𝐻# −
:==>>0B

c
]ed!(909%) +

:==>>0B

c
. (305) 2854 

Because 𝑣' < 0 and 𝑖 > 0, the funcHonal defined in phase four is verified to be a convergent 2855 

integral. 2856 

We can now solve for the third sub-problem since we have the soluHon (𝑆𝑃>∗) to the fourth 2857 

sub-problem. The hamiltonian funcHon of phase 3 is given as follows 2858 

 2859 

 ℋ-(𝑡,𝑊-, 𝐻-, 𝜆-) = −e0:9[$/
!

'%
− &$/

%
− (𝐶( + 𝐶)𝐻-)𝑊- +2860 

𝜃[ 5
(()EGHIJ)(2%02$))!

 2861 

 ⋅ (𝐻- + 𝜂𝜀𝑏𝜓(𝐻- − 𝐻") − 𝐻# − 𝜂𝜀𝑏𝜓(𝐻# − 𝐻"))']] 2862 

 		+𝜆- ⋅
[CE(A0))$/]

+,
 (306) 2863 

EquaHon (306) can be rewrimen as follows. 2864 

 2865 

 ℋ-(𝑡,𝑊-, 𝐻-, 𝜆-) = −e0:9[$/
!

'%
− &$/

%
− (𝐶( + 𝐶)𝐻-)𝑊- + 𝐺Z(𝐻- − 𝐻#)' 2866 

 	+𝜃𝛾] + 𝜆- ⋅
[CE(A0))$/]

+,
 (307) 2867 

Where,  2868 

 𝐺Z =
N(405)
[2%02$]!

. (308) 2869 

 2870 

Hence, the first order condiHons are as follows 2871 

 2872 

 Uℋ/
U$/

= −e0:9[$/
%
− &

%
− 𝐶( − 𝐶)𝐻-] + 𝜆-[

(A0))
+,

] = 0. (309) 2873 

  2874 

 2875 

 𝜆̇- = − Uℋ/
U2/

. (310) 2876 

  2877 

 𝜆-∗ (𝑡# ,𝑊-
∗(𝑡#), 𝐻-∗(𝑡#)) = 𝜆>∗ (𝑡# ,𝑊>

∗(𝑡#), 𝐻>∗(𝑡#)) (311) 2878 

 ℋ-
∗(𝑡#) =

U,V&∗(9%,$&∗(9%),2&∗(9%))
U9%

, (312) 2879 

   2880 
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 𝐻̇- =
)
+,
[𝑅 + (𝛼 − 1)𝑊-]. (313) 2881 

The transversality condiHon is given by lim9→;𝜆-(𝑡) = 0. From EquaHon (309), we obtain 2882 

the value for the costate variable 𝜆- as follows.  2883 

 𝜆- =
)
T
e0:9[$/

%
− &

%
− 𝐶( − 𝐶)𝐻-], (314) 2884 

where 𝑚 = (A0))
+,

. The derivaHve of 𝜆- with respect to 𝑡 is given by  2885 

 𝜆̇- =
)
T
e0:9[− :$/

%
+ :&

%
+ 𝑖𝐶( + 𝑖𝐶)𝐻- 2886 

 		− S+C
+,
− 𝐶)𝑚𝑊- +

$̇/
%
]. (315) 2887 

The derivaHve of ℋ- with respect to the water table height 𝐻- is given by  2888 

 − Uℋ/
U2/

= −e0:9[𝐶)𝑊- − 2𝐺Z𝐻- + 2𝐺Z𝐻#]. (316) 2889 

From EquaHon (310) and (315), we obtain the following equaHon.  2890 

 −𝐶)𝑊- + 2𝐺Z𝐻- − 2𝐺Z𝐻# =
)
T
[− :$/

%
+ :&

%
+ 𝑖𝐶( + 𝑖𝐶)𝐻- 2891 

 		− S+C
+,
− 𝐶)𝑚𝑊- +

$̇/
%
]. (317) 2892 

Solving for 𝑊̇- in the above equaHon we get the following equaHons.  2893 

 $̇/
T%

= :$/
T%

− :&
T%

− :S4
T
− :S+2/

T
			+ S+C

+,T
+ 2𝐺Z𝐻- − 2𝐺Z𝐻#  (318) 2894 

  2895 

 2896 

 $̇/
%
= :$/

%
− :&

%
− 𝑖𝐶( − 𝑖𝐶)𝐻- 			+

S+C
+,
+ 2𝑚𝐺Z𝐻- − 2𝑚𝐺Z𝐻#  (319) 2897 

  2898 

 2899 

 𝑊̇- = 𝑖𝑊- − 𝑖𝑔 − 𝑖𝑘𝐶( − 𝑖𝑘𝐶)𝐻- 			+
S+C%
+,

+ 2𝑚𝑘𝐺Z𝐻- − 2𝑚𝑘𝐺Z𝐻#  (320) 2900 

  2901 

 2902 

 𝑊̇- = 𝑖𝑊- + [2𝑚𝑘𝐺Z − 𝑖𝑘𝐶)]𝐻- + [−𝑖𝑔 − 𝑖𝑘𝐶( 			+
S+C%
+,

− 2𝑚𝑘𝐺Z𝐻#] (321) 2903 

Likewise, the value for 𝐻̇- can be rewrimen as  2904 

 𝐻̇- =
(A0))$/

+,
+ C

+,
. (322) 2905 

Consequently, we now have to solve the two simultaneous differenHal equaHons ((321) and 2906 

(322)). Thus, by leong 𝑚 = (A0))
+,

, 𝑢𝑢𝑢 = 2𝑚𝑘𝐺Z − 𝑖𝑘𝐶), 𝑁𝑁𝑁 = −𝑖𝑔 − 𝑖𝑘𝐶( +
S+C%
+,

−2907 
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2𝑚𝑘𝐺Z𝐻#  and 𝑀 = C
+,

, we get the following system of differenHal equaHons. 2908 

 2909 

 𝑊̇- = 𝑖𝑊- + 𝑢𝑢𝑢 ⋅ 𝐻- + 𝑁𝑁𝑁1. (323) 2910 

 𝐻̇- = 𝑚 ⋅𝑊- +𝑀. (324) 2911 

Puong the above system of differenHal equaHons in a 𝐷 operator format (where 𝐷 = 6
69

), and 2912 

solving for 𝑊- yields the following second order linear non-homogeneous differenHal 2913 

equaHon.  2914 

 [(𝐷' − 𝐷𝑖) − 𝑢𝑢𝑢 ⋅ 𝑚]𝑊- = 𝑢𝑢𝑢 ⋅ 𝑀. (325) 2915 

The parHcular soluHon of the above differenHal equaHon is given by: −j
T

 and the 2916 

characterisHc roots by 𝑧),' =
:±√:!E>!!!⋅T

'
. Furthermore, the steady state level water table is 2917 

given by  2918 

 𝐻-∗ = [
:=>0BBB)

!!!
] (326) 2919 

Hence, the soluHon for 𝑊-
∗(𝑡) and 𝐻-∗(𝑡) are given as follows, respecHvely.  2920 

 𝑊-
∗(𝑡) = 𝐷𝐴1e9W+ + 𝐷𝐵1e9W! − j

T
, (327) 2921 

   2922 

 𝐻-∗(𝑡) =
T⋅X+)
W+

e9W+ + T⋅X.)
W!

e9W! +
:=>0BBB)

!!!
. (328) 2923 

Where 𝐷𝐴1 and 𝐷𝐵1 are obtained by imposing the iniHal condiHons. 2924 

 2925 

 𝐷𝐵 = W!
T
e0W!9$[𝐻" −

'=
>0BBB)

!!!
		−

[2%0
'=
>*777+

### ]0[2$0
'=
>*777+

### ][8!(:%*:$)

[8+(:%*:$)0[8!(:%*:$)
]. (329) 2926 

   2927 

 𝐷𝐴 = W+
T
[
[2%0

'=
>*777+

### ]0[2$0
'=
>*777+

### ][8!(:%*:$)

[8+:%0[8+:$<8!(:%*:$)
]. (330) 2928 

The proves for phase 2 and phase 1 can be found under the proofs of the tax policy (phases 1 2929 

and 2). Under the tax policy (phases 1 and 2), we have the same objecHve funcHons and 2930 

constraints as in the case of LS and No policy intervenHons (phases 1 and 2) because phases 2931 

1 and 2 are also not taxed under the tax policy. 2932 

 2933 

 2934 
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Appendix 19. Main results of the sensi#vity analysis of the cri#cal thresholds 2935 

 2936 

Table 2. Main results from the scenarios analysed under the LS-GDEs and no policy 2937 

intervenHons scenario. 2938 

Scenario Water table 

height 

(𝑚. 𝑎. 𝑠. 𝑙) 

Aquifer 

depleHon 

ajer 250 

years 

(𝑀𝑚-) 

Shijing year Total 

aggregate 

social welfare 

(Million US 

dollars) 

Baseline (Without GDEs 

and LS) 

1170.87 214 - 0.4032 

With GDEs’ dynamics 

(empirical criHcal 

thresholds for the water 

table height and GDEs’ 

health phases):  

𝐻! = 1200.5, 

 𝐻" = 1191.5, 

 𝐻# = 1189.5; 

 𝛿 = 0.5, 

 𝜌 = 0.35, 

 𝛾 = 0.15. 

1177.53 164.8 𝑡! = 157.7 

𝑡" = 187.4 

𝑡# = 	190.1	

0.3415  

SensiHvity 1 (lower 

criHcal thresholds for the 

GDEs’ health phases):  

𝛿 = 0.4, 

 𝜌 = 0.3, 

 𝛾 = 0.1. 

1177.65 164 𝑡! = 148 

𝑡" = 188.3 

𝑡# = 191.2 

0.3419 

SensiHvity 2 (higher 

criHcal thresholds for the 

GDEs’ health phases): 

1177.4 165.68 𝑡! = 164.3	
𝑡" = 187 

𝑡# = 188	

0.3414 
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 𝛿 = 0.7, 

 𝜌 = 0.4, 

 𝛾 = 0.2. 

SensiHvity 3 (lower 

criHcal thresholds for the 

water table height): 

 𝐻! = 1195.5, 

 𝐻" = 1190.5, 

 𝐻# = 1184.5. 

1178.5 162.3 𝑡! = 158.7 

𝑡" = 183.6 

𝑡# = 241.8 

0.3482 

SensiHvity 4 (higher 

criHcal thresholds for the 

water table height): 

 𝐻! = 1205.5, 

 𝐻" = 1196.5, 

 𝐻# = 1192.5. 

1180.98 150.64 𝑡! = 173	
𝑡" = 189 

𝑡# = 195	

 0.3349 

 2939 

Table 3. Main results from the scenarios analysed under the tax policy. 2940 

Scenario Water table 

height 

(𝑚. 𝑎. 𝑠. 𝑙) 

Aquifer 

depleHon 

ajer 250 

years 

(𝑀𝑚-) 

Shijing year Total 

aggregate 

social welfare 

(Million US 

dollars) 

Baseline (Without GDEs 

and LS) 

1170.87 214 - 0.4032 

With GDEs’ dynamics 

(empirical criHcal 

thresholds for the water 

table height and GDEs’ 

health phases):  

𝐻! = 1200.5, 

 𝐻" = 1191.5, 

1179.1 158 𝑡! = 163.8 

𝑡" = 197	
𝑡# = 201.4 

0.3414 
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 𝐻# = 1189.5; 

 𝛿 = 0.5, 

 𝜌 = 0.35, 

 𝛾 = 0.15. 

SensiHvity 1 (lower 

criHcal thresholds for the 

GDEs’ health phases):  

𝛿 = 0.4, 

 𝜌 = 0.3, 

 𝛾 = 0.1. 

1179.04 159 𝑡! = 156.8	
𝑡" = 198	
𝑡# = 201	

0.3415 

SensiHvity 2 (higher 

criHcal thresholds for the 

GDEs’ health phases): 

 𝛿 = 0.7, 

 𝜌 = 0.4, 

 𝛾 = 0.2. 

1178 160 𝑡! = 163 

𝑡" = 196	
𝑡# = 199	

0.3413 

SensiHvity 3 (lower 

criHcal thresholds for the 

water table height): 

 𝐻! = 1195.5, 

 𝐻" = 1190.5, 

 𝐻# = 1184.5. 

1179.2 160 𝑡! = 168.8	
𝑡" = 193.6 

𝑡# = 251.9 

0.3477 

SensiHvity 4 (higher 

criHcal thresholds for the 

water table height): 

 𝐻! = 1205.5, 

 𝐻" = 1196.5, 

 𝐻# = 1192.5. 

1182.01 146 𝑡! = 154 

𝑡" = 200	
𝑡# = 202.8	

 0.3347 

 2941 

 2942 

 2943 

Table 4. Main results from the scenarios analysed under the quota policy. 2944 
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Scenario Water table 

height 

(𝑚. 𝑎. 𝑠. 𝑙) 

Aquifer 

depleHon 

ajer 250 

years 

(𝑀𝑚-) 

Shijing year Total 

aggregate 

social welfare 

(Million US 

dollars) 

Baseline (Without GDEs 

and LS) 

1170.87 214 - 0.4032 

With GDEs’ dynamics 

(empirical criHcal 

thresholds for the water 

table height and GDEs’ 

health phases):  

𝐻! = 1200.5, 

 𝐻" = 1191.5, 

 𝐻# = 1189.5; 

 𝛿 = 0.5, 

 𝜌 = 0.35, 

 𝛾 = 0.15. 

1186.47 150.8 𝑡! =126 

𝑡" =155 

𝑡# =	161 

0.1395 

SensiHvity 1 (lower 

criHcal thresholds for the 

GDEs’ health phases):  

𝛿 = 0.4, 

 𝜌 = 0.3, 

 𝛾 = 0.1. 

1186.47 150.7 𝑡! =126 

𝑡" =144 

𝑡# =161 

0.1395 

SensiHvity 2 (higher 

criHcal thresholds for the 

GDEs’ health phases): 

 𝛿 = 0.7, 

 𝜌 = 0.4, 

 𝛾 = 0.2. 

1186.47 150.7 𝑡! =126 

𝑡" =145 

𝑡# =163 

0.1395 

SensiHvity 3 (lower 1186.47 150.7 𝑡! =132 0.1395 
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criHcal thresholds for the 

water table height): 

 𝐻! = 1195.5, 

 𝐻" = 1190.5, 

 𝐻# = 1184.5. 

𝑡" =151 

𝑡# = 𝑁/𝐴	

SensiHvity 4 (higher 

criHcal thresholds for the 

water table height): 

 𝐻! = 1205.5, 

 𝐻" = 1196.5, 

 𝐻# = 1192.5. 

1186.5 150.7 𝑡! =119 

𝑡" =131 

𝑡# =136 

 0.1395 

 2945 

 2946 

Table 5. Main results from the scenarios analysed under packaging and sequencing of taxes 2947 

and quotas. 2948 

Scenario Water table 

height 

(𝑚. 𝑎. 𝑠. 𝑙) 

Aquifer 

depleHon 

ajer 250 

years 

(𝑀𝑚-) 

Shijing year Total 

aggregate 

social welfare 

(Million US 

dollars) 

Baseline (Without GDEs 

and LS) 

1170.87 214 - 0.4032 

With GDEs’ dynamics 

(empirical criHcal 

thresholds for the water 

table height and GDEs’ 

health phases):  

𝐻! = 1200.5, 

 𝐻" = 1191.5, 

 𝐻# = 1189.5; 

 𝛿 = 0.5, 

1184.8 144.6 𝑡! = 163.8	
𝑡" = 197	
𝑡# = 	201.4	

0.3414 
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 𝜌 = 0.35, 

 𝛾 = 0.15. 

SensiHvity 1 (lower 

criHcal thresholds for the 

GDEs’ health phases):  

𝛿 = 0.4, 

 𝜌 = 0.3, 

 𝛾 = 0.1. 

1184.8 144.6 𝑡! = 156	
𝑡" = 198	
𝑡# = 201 

0.3415 

SensiHvity 2 (higher 

criHcal thresholds for the 

GDEs’ health phases): 

 𝛿 = 0.7, 

 𝜌 = 0.4, 

 𝛾 = 0.2. 

1184.7 145 𝑡! = 163.9	
𝑡" = 196	
𝑡# = 199 

0.3413 

SensiHvity 3 (lower 

criHcal thresholds for the 

water table height): 

 𝐻! = 1195.5, 

 𝐻" = 1190.5, 

 𝐻# = 1184.5. 

1182.53 160 𝑡! = 168.8 

𝑡" = 194	
𝑡# = 252	

0.3477 

SensiHvity 4 (higher 

criHcal thresholds for the 

water table height): 

 𝐻! = 1205.5, 

 𝐻" = 1196.5, 

 𝐻# = 1192.5. 

1187.8 132 𝑡! = 154	
𝑡" = 200	
𝑡# = 202.8 

 0.3347 

 2949 

 2950 

Appendix 20. Monte Carlo simula#ons 2951 

 2952 

We assume that the natural recharge rate (𝑅) is roughly 7.5	𝑀𝑚-, but we don’t know the 2953 

exact constant 𝑅, it is uncertain. Although the analyHc opHmal control soluHon is derived 2954 
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under constant aquifer recharge 𝑅, annual rainfall in the Dendron area varies substanHally 2955 

from year to year. Historical rainfall for the past 115 years is used to esHmate the distribuHon 2956 

of annual rainfall 𝑃9. EffecHve recharge is assumed to be a fixed fracHon 𝜙 of rainfall, such 2957 

that 𝑅9 = 𝜙𝑃9. Where 𝜙is an esHmated recharge coefficient (area × fracHon that percolates). 2958 

The empirical mean 𝜇C  is equal to (less or more but close) the determinisHc recharge value 2959 

used in the analyHc soluHon (7.35 Mm³/year), while the empirical variance provides the 2960 

dispersion for random draws. For each Monte Carlo run 𝑘, recharge is drawn as: 𝑅(%) ∼2961 

𝑓(𝜇C , 𝜎C'). Where 𝑓 is the fimed distribuHon of rainfall values from the Dendron area. The 2962 

opHmal control model is then solved using the closed-form analyHc expressions for each 2963 

phase, with 𝑅 replaced by the draw 𝑅(%). These yields switching Hmes 𝑡!
(%), 𝑡"

(%), 𝑡#
(%)and 2964 

opHmal paths 𝐻(%)(𝑡)and 𝑊(%)(𝑡) for that simulaHon. RepeaHng this process 300 Hmes yields 2965 

distribuHons for switching Hmes, water-table trajectories, and extracHon paths. This approach 2966 

preserves the analyHc soluHon structure and Pontryagin opHmality while incorporaHng 2967 

realisHc rainfall variability. 2968 

 2969 

We used gridded daily rainfall data (from 1900 to 2015, 115 years) for the Dendron area, 2970 

extracted using the area’s  geographical coordinates. These datasets were then converted 2971 

into annual rainfall datasets. The gridded daily rainfall data was obtained from the Royal 2972 

Netherlands Meteorological InsHtute (KNMI) Climate Explorer, and freely available online 2973 

(hmps://climexp.knmi.nl/start.cgi). The KNMI Climate Explorer CPC (Climate PredicHon 2974 

Center) database provides gridded daily rainfall data, including long-term means of both 2975 

monthly and daily precipitaHon. These data are produced by the NOAA Climate PredicHon 2976 

Center’s global unified gauge-based analysis of daily precipitaHon, which spans the period 2977 

1900–2015. The dataset integrates historical and recent land-surface precipitaHon 2978 

observaHons from mulHple sources and merges them into global precipitaHon esHmates using 2979 

advanced data assimilaHon and forecasHng models. The CPC Global Daily Unified Gauge-2980 

Based Analysis of PrecipitaHon is provided at a spaHal resoluHon of 0.5° laHtude by 0.5° 2981 

longitude. From the rainfall datasets, we found the mean in excel to be equal to 415.5 mm, 2982 

close to the theoreHcal average annual rainfall of amount 407	𝑚𝑚 as documented for the 2983 

Hout river catchment in which the Dendron area is situated. We also fimed several 2984 

distribuHons and found that the data best fit the Gamma distribuHon. 2985 
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 2986 

 2987 
Figure 1. QQ plot for the Gamma distribuHon generated from the rainfall data. 2988 

 2989 

Figure 2 shows the fimed Gamma distribuHon of the rainfall datasets. The scale and shape 2990 

parameters are equal to a = 13.9093 [10.7858, 17.9374] and b = 29.8693 [23.0546, 38.6985], 2991 

respecHvely. The mean, variance, and standard deviaHon is equal to 415.4613, 12409.5447, 2992 

and 111.3981, respecHvely. 2993 

 2994 

 2995 

 2996 

 2997 
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Figure 2. Fimed Gamma distribuHon of the rainfall data. 2998 

 2999 

We then move onto esHmaHng the annual natural recharge rate using the relaHon 𝑅9 = 𝜙𝑃9, 3000 

where 𝜙 is an esHmated recharge coefficient. Since we don’t have historical recharge values 3001 

to run a regression equaHon, we make use of the relaHon we stated already. That is, the Mean 3002 

annual rainfall (MAR) is proporHonal to Mean annual recharge (𝑀𝐴𝑅&) through a constant 𝜙: 3003 

𝑀𝐴𝑅& = 𝜙 ⋅ 𝑀𝐴𝑅. Since we know both means (from long-term rainfall data and long-term 3004 

groundwater budget studies), we can solve for the constant 𝜙: 𝜙 = j+CF
j+C

= Q.-K
>(Q

= )>Q
R)>(

. We 3005 

will also make use of this value for 𝜙 when running Montecarlo simulaHon since random 3006 

recharge rates will be obtained from random rainfall rates that are picked randomly from the 3007 

Gamma distribuHon in a Montecarlo simulaHon. We also went further to make use of the 3008 

value for 𝜙 and convert the rainfall data into the recharge rates data to test if this value 3009 

approximates correctly the natural recharge rates in the aquifer. We obtained a mean of 3010 

7.502803 mm in excel, very close to the theoretical annual mean of 7.35 mm. We then carried 3011 

out the best distribution that fits the data.  We again found that the Gamma distribution fits 3012 

the data best. The scale and shape parameters are equal to a = 13.9093 [10.7858, 17.9374] 3013 

and b = 0.539409 [0.416342, 0.698854], respecHvely. The mean, variance, and standard 3014 

deviaHon is equal to 7.5028, 4.0471, and 2.0117, respecHvely. The QQ plot is shown in Figure 3015 

3 below. 3016 

 3017 
Figure 3. QQ plot for the Gamma distribuHon using the esHmated recharge rates data. 3018 

 3019 

 3020 
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