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1. Introduction 

Globally, exposure of plants to airborne pollutants has been shown to reduce crop health and 

yields significantly. Existing evidence comes from both high-income counties such as the 

United States, and low- and middle-income countries such as India, China, and Ghana, with a 

focus on crop health, yields, and agricultural productivity (Aragón & Rud, 2016; Lobell et 

al., 2022; Merfeld, 2023; Zhou et al., 2018). The negative effect of air pollution on 

agricultural productivity is exacerbated in the presence of heat stress in the United States (Liu 

& Desai, 2021), including in California, where the economic loss caused by such pollution in 

the agricultural sector is significant (Hill et al., 2024; Hong et al., 2020; McGrath, 2020; 

Chang et al., 2016).1 This paper empirically assesses the impact of particulate matter on the 

value of farmland in the Central Valley of California. We use the Ricardian framework to 

demonstrate that the higher levels of particulate matter are linked to an economically 

significant decline in the value of farmland.  

The presence of high levels of coarse particulate matter (PM), a measure of dust, in the 

atmosphere impairs the photosynthesis process necessary for plant growth by reducing solar 

radiation through absorption and scattering (Cánovas et al., 2017; Matyssek et al., 2008). The 

damaging impact of pollution (e.g., particulate matter and ozone) on crop health and yields is 

potentially due to the internal reaction of plant tissues and pollutants in response to higher 

levels of air pollutants. (Matyssek et al., 2008; Miller, 1988).2 Furthermore, air pollutants 

 
1 Hong et al. (2020), for example, found that high-value perennial crops in California were negatively 
affected by changes in local temperature and ozone concentrations, with yield losses of 5% to 15%, 
depending on the varying degree of pollutant exposure and the different crop types. According to that 
study, yield loss in high-value crops is translated into a loss in production value of roughly US$1 billion 
per year, suggesting that air pollution combined with the non-linear impact of precipitation and maximum 
temperature has a significant negative impact on the agricultural economy in California. 
2 Simply put, chronic exposure to airborne pollutants causes damage to vegetation through lower stomatal 
conductance (ability to exchange gases and transpiration through leaf stomata, critical for plant growth). 
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association with low precipitation and high temperatures during severe drought periods can 

cause a decrease in farm income. Climate change causes more intense drought cycles, which 

increase airborne dust, and negatively impact agricultural productivity. For example, 

Achakulwisut et al. (2019) found a relationship between climate change-induced increased 

aridity and dust levels in the southwestern United States. This paper documents the 

relationship between dust levels and farmland values in California’s Central Valley, a region 

that is dependent on agriculture and has high levels of pollution. Quantifying this relationship 

is important to inform the debate on environmental policies and negative externalities on 

agriculture. Specifically, in changing climates with uncertain irrigation and increased 

farmland abandonment, which potentially contribute to increased dust concentration. 

Previous analytical work (e.g., Liu & Desai, 2021) in the United States supports the thesis 

that the rise in levels of air pollution and global climate warming are interconnected. While 

strong evidence exists of a relationship between changes in air pollutants and crop yields, 

their impact on farmland’s value has not yet been empirically quantified. Our farmland 

hedonic model is based on the standard Ricardian framework (Mendelsohn et al., 1994; 

Mendelsohn & Dinar, 2003), but it is extended to include particulate matter in the production 

function along with climate variables that affect agricultural productivity and therefore the 

expected rent from farmland. We exploit the quasi-random variation in particulate matter 

attributable to the transportation of pollutants by wind to estimate the causal impact of dust 

levels on farmland values in agricultural-dependent regions of California.  

By estimating the effects of dust levels on farmland values, this study provides empirical 

evidence on whether pollution-induced crop yield loss translates to decrease in farmland 

values. Ricardian estimates indicate that dust levels have a negative net effect on farmland 
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values and highly significant with an inverse U-shaped response curve. The inverse U-

shape’s increasing portion captures preparatory agricultural activities (plowing, disking) on 

farmland necessary for increased productivity that also produce dust, but the farmland values 

decrease after a threshold of dust level (that may blow from neighboring locations by winds. 

This implies that coarse particulate matter is sufficient to cause pollution-induced crop losses 

after a threshold point, and a decrease in farmland sale price per acre. Air pollution can have 

varying effects on annual crops (e.g., wheat, rice, maize, and soybean), and perennial crops 

(e.g., fruits, nuts, and other tree crops). Moreover, pollution may affect buyers’ expectations 

of land if they repurpose farmland for uses other than agriculture, such as solar development, 

housing development, recharge basins, and upland habitat restoration. Therefore, changing 

land use in our study region necessitates the quantified impact of pollution on farmland 

values. Our empirical strategy accounts for differences in agricultural land-use in the Central 

Valley. 

In this paper, we present the first empirical evidence of the impact of parcel-specific dust 

levels on the sales prices of farmland in the California context. Our findings are relevant to 

policy issues about the farmland market in the Central Valley, particularly in the context of 

changing agricultural land use and its effects on possible climate-induced dust levels in a 

major (and more diverse crops) agricultural producing region of the United States. 

2. Analytical Framework and Identification Strategy 

This section summarizes the analytical framework of a pooled Ricardian model as applied to 

farmland exposed to varying degrees of dust particulate levels. To model the relationship 

between agricultural production, climate and dust levels, we follow a Ricardian model 
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similar to Mendelsohn, Arellano-Gonzalez, and Christensen (2010), and a partial derivative 

framework similar to Tai and Val Martin (2017). The Ricardian model is represented by:  

( 1 )   𝜋 = ∑𝑃!𝑄!&𝑿! , 𝑃𝑀! , 𝑬!+ − ∑𝑟𝑿𝒋, 𝑗 = 1,2,3, … , 𝑛	 

where 𝑄! is the output of crop 𝑗, 𝑿𝒋 is a set of vectors of purchased inputs; 𝑃𝑀! represents 

exposure to coarse particulate matter (a measure of dust) and 𝑬! is a set of vectors of local 

environmental conditions, including climate and soil quality, for crop production. 𝑃! is the 

market price of crop 𝑗, and 𝑟 is a vector of input prices. Assuming constant impact of other 

pollutants on crop productivity, we focus on a single pollutant, average coarse particulate 

matter (PM10) for 36-months prior to the sale of farmland, and the effect of coarse 

particulate matter on crop productivity and thus on the value of farmland. We acknowledge 

that dust is not always an independent component in crop production, and its 

level/concentration can be partially influenced by weather (Achakulwisut et al., 2019). We 

carried out a series of checks to address the confounding factors between dust particulate 

concentrations and weather variables. Specifically, to claim exogeneity in our main 

explanatory variable, dust levels, we explain the variation in coarse particulate matter with 

the number of days of wind associated with low polluting days (hereafter refer to as clean 

winds) and the number of days of wind associated with high polluting days (hereafter refer to 

as polluting winds). Then derive the predicted values of PM10 after controlling for weather 

variables and month- and year-of the sale. The weather variable (derived 36-months prior to 

the sale of land) includes wind speed, total precipitation, relative humidity (and their squared 

terms), five bins of maximum temperature, and their interaction with relative humidity. 
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Air pollution and weather have an interactive effect, and when pollution is included 

alongside weather variables in the same estimated equation, the estimates will be biased by 

confounding factors. Because pollution and weather (particularly, maximum temperature) 

covary, we believe that including predicted measures of pollution (PM10) alongside the 

climate normal (29-year moving averages of degree-days during summer and winter, total 

precipitation, and chill hours in winter) may circumvent the issue of pollution-weather 

covariation.  

Furthermore, dust is both a result of dryness of soil due to drought, with a negative 

impact, but also the result of the production processes (e.g., plowing, tillage, pollution from 

farm machinery, and from vehicle traffic on unpaved roads, etc.) that increase productivity 

but create dust (Lambert et al., 2020). This raises a concern about simultaneity, which could 

bias our estimates. The empirical section addresses concerns about simultaneity by using the 

parcel-specific predicted PM10.3 Particulate matter also has an impact on agricultural 

productivity by affecting labor force health and participation, either through productivity loss 

or absenteeism due to sick days resulting from negative impacts of pollution. However, this 

study is unable to investigate the effect of dust on agricultural labor supply due to data 

limitations. 

Following Eq. (1), the farmer is expected to choose a set of inputs X, such that the rent on 

the land is maximized. The farmland value is proportional to the net revenue from the land, 

meaning that 𝑉 = #
$

 where 𝑟 is the interest rate. The reduced form of the Ricardian pooled 

 
3 In our robustness checks, we also utilize the inverse distance weighted interpolation technique to 
measure pollution at the parcel. 
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model that examines the relationship between farmland value (𝑉%&) of parcel 𝑖, dust 

particulates (𝑃𝑀%,(), and climate variables (𝐸%&) is as follows: 

( 2 )   𝑙𝑛 𝑉% = 𝛽) + 𝛽*𝑃𝑀%,( + 𝛽+𝑃𝑀%,(
+ + 𝜃𝑬%,( + 𝜌,( + 𝜇%  

where 𝛽 is the estimated coefficient. PM%,( represents exposure to the coarse particulate 

concentrations (PM10) at the parcel level, 𝑖 = 1,… ,7987 in year 𝑦 = 2010,… ,2017. We 

include quadratic terms of PM in the right-hand side of the model to account for the non-

linear relationship between PM10 and agricultural production. We follow previous Ricardian 

literature and include a host of climate variables, 𝑬%,(, such as 29-year moving averages of 

degree-days during summer and winter, total precipitation, and chill hours in winter (and 

their squared terms and the interaction between degrees-days and precipitation). We also 

consider parcel-specific characteristics, which include land quality (an indicator of high- and 

low-quality land), topographical characteristics, such as elevation, slope, and coordinate 

latitude. Other covariates include the distance from the nearest city to capture partial 

development pressures, the number of wells serving a parcel to capture potential irrigation 

capacity, and an indicator for multiple parcel sales to control for possible discount sale price 

per unit of land. 𝜌,( is the month- and year-of-sale fixed effects to capture the time-varying 

changes on farmland values, such as a common technology trend impacting crop yields. The 

expression 𝜇% denotes disturbance term, representing the variations in farmland values that 

are not explained by our model. To account for spatial correlation in the error term, we 

cluster the standard errors at the parcel level. The marginal effect of pollution on farmland 

values is given by - ./0
-12!,#

= 𝑉F(𝑏* + 2𝑏+𝑃𝑀FFFFF%,(). 
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Any observed correlations between V, PM, and E could be confounded by the inherent 

covariation between dust particulate concentrations and climate variables. For example, it is 

expected that with higher wind speeds more dust is emitted. Also, with an increase in 

temperature and a decrease in relative humidity, the “stickiness” of the emitting surface 

might change, making these surfaces prone to more sources of dust. Furthermore, if the 

pollution and temperature both affect and are affected by current intensive farming in the 

local area, then this could bias our estimates. One approach to address this concern is to use 

the predicted value of PM10 instead of the observed value of PM10. This assumes that the 

measurement of PM10 at the parcel level can be explained by wind speed and direction, daily 

maximum temperature, precipitation, and relative humidity. Then the predicted value of 

PM10 can be estimated by regressing daily PM10 on these predictors. By including the 

predicted value instead of the observed value in the hedonic regression of dust impact on 

land value, we minimize omitted variable bias. The estimated equation is: 

(3)   𝑙𝑛 𝑉% = 𝛽) + 𝛽*𝑃𝑀I %,( + 𝛽+𝑃𝑀I %,(
+ + 𝜃𝑬%,( + 𝜌,( + 𝜇%  

where 𝑃𝑀I %,( , is the predicted PM10 pollutant, explained by wind speed and direction, 

maximum temperature, precipitation, and relative humidity. We also include the land use 

share of annual crops, perennial crops, non-cultivated land (fallowed or idle land and natural 

vegetation) and developed land. Lastly, we include soil attributes such as erosion factor, 

saturated hydraulic conductivity, and organic matter.  

Equation (3) eliminates the confounding effects of covariation between coarse particulate 

matter and omitted variables in the model. This model is similar to two-stage least squares; 

the first stage of which can be written as  
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(4)   𝑃𝑀I %,( = 𝜏) + 𝜏𝑾%,( + 𝜌,( + 𝜀%,(   

where 𝑾%,(is the 36-months averages of host of weather variables that explain the PM10 at 

the parcel level. 𝜀%,( represents the residual terms (𝑃𝑀 −	𝑃𝑀I ). Equation (3) represents the 

second stage. It is important to note that 𝑾%,(	in Eq. 4 is different from 𝑬%,( in Eq. 3. The 

former is a set of 36-month averages of weather, while the latter is 29-year averages of 

climate variables, which is the climate normal. 

Furthermore, to explore the estimate of endogeneity bias, we estimate a correlated 

coefficient model similar to Bento, Freedman, and Lang (2013), which can be written as 

(5) 𝑙𝑛 𝑉% = 𝛽) + 𝛽*𝑃𝑀%,( + 𝛽+𝑃𝑀%,(
+ + 𝜓𝜀3,(N + 𝛿𝑃𝑀%,( ∗ 𝜀3,(N + 𝜃𝑬%,( + 𝜌,( + 𝜇%  

The coefficient on the PM is interpreted as the valuation of exogeneous changes in air 

quality. The coefficient on the residual term is interpreted as the bias resulting from the 

endogeneity of PM10. The coefficient on the interaction term is an indication of the direction 

of bias. 

3. Data Sources and Summary Statistics 

This article relies on datasets from multiple sources, including geo-referenced farmland 

parcel sales prices for California’s Central Valley from private vendor, and publicly available 

air pollution, climate, soil quality, and general non-climatic variables. A detailed definition of 

the variables used in this article is provided in Appendix B. Summary statistics are reported at 

the parcel level.    

3.1. Agricultural parcels 
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This study focuses on the dust exposure of sold parcels for agricultural purposes in 18 

counties in the Central Valley of California between 2010 and 2017.4 These parcels are 

associated with field crops, orchards, and vineyards. We explore Ricardian estimates based 

on two dependent variables: farmland sale prices per acre and the use (appraisal) value of the 

land for agricultural purposes. Parcel-level farmland sale price and the appraisal value of the 

land (separate use values for both the land component and any improvements made to the 

land is reported) is obtained from ATTOM Data Solutions, a private data vendor which 

aggregates data across the County Assessor Offices in California. Using the dependent 

variables mentioned earlier, we evaluate Ricardian estimates of the impact of dust exposure 

on the farmland market. To conduct an analysis, we utilize 9,300 observations representing 

7,987 agricultural parcels sold in California’s Central Valley between 2010 and 2017.  

The Central Valley offers several advantages in investigating dust exposure in the 

agricultural sector. First, Central Valley grows hundreds of different types of crops due to its 

Mediterranean-like climate, and supports the food security of the United States (Jessoe et al., 

2021). Importantly, for our purposes, the farmland values of the Central Valley are primarily 

determined by their ability to support agricultural production. Second, Central Valley is 

vulnerable to future climate change (Lee, De Gryze, and Six 2011), and air pollution (Hong 

et al., 2020).5 Climate change causes more intense drought cycles, which increase airborne 

 
4 For our analysis, we combine the counties that make up the Sacramento and San Joaquín Valleys. 
Sacramento Valley comprises the counties of Tehama, Glenn, Butte, Colusa, Yolo, Solano, Sutter, Yuba, 
Placer, and Sacramento. The northern part of the San Joaquin Valley consists of the counties of San 
Joaquin, Stanislaus, and Merced. The central part of the San Joaquin Valley includes the counties of 
Madera, and Fresno. The southern part of the San Joaquin Valley includes the counties of Tulare, Kern, 
and Kings. Fresno and Tulare counties together account for 42% of land sales observations in the Valley. 
5 California’s Central Valley is exposed to some of the highest levels of particulate and ozone pollution in 
the nation, which damages human health and economic output, including revenue from agricultural 
production (Hong et al., 2020; Huang & London, 2012; H. J. Lee et al., 2016). 
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dust that negatively impact agricultural productivity and, therefore, reduce the value of 

farmland. Third, for empirical purposes, Central Valley can plausibly assume to be as 

homogenous as possible with respect to the variables excluded from the explanatory 

relationship, such as input prices, prevailing agricultural practices, and sources of air 

pollution arising from agricultural operations (e.g., pollution from farm machinery, and from 

vehicle traffic on unpaved roads, etc.). Appendix Figure A1 presents the map of the study 

area. 

 Summary statistics for farmland sales values and appraisal values are provided in Panel A 

of Table 1. The average per-acre sale value of farmland in the study region and period (2010–

2017) is $20,683, compared to the appraisal value of the land, which is $6,543. The dollar 

values are adjusted for inflation. The annual Gross Domestic Product (Chain-Type Price 

Index) obtained from the Federal Reserve Economic Database is used to convert nominal 

values to 2017 U.S. dollars (U.S. Bureau of Economic Analysis, 2024). Furthermore, we 

winsorize the farmland sale price and the appraisal values at the 1 and 99 percentiles to 

minimize the impact of outliers. In 2017, farmland sale prices in the Central Valley were 

slightly less than doubled, reaching $25,250 from $13,197 in 2010 (as shown in Appendix 

Table A1). 

3.2. Air pollution data 

We measure the exposure of agricultural parcels to air pollution based on their locations and 

the sale of farmland month-by-year. Using the parcels geo-coordinates, we obtain air 

pollution data (coarse particulate matter, PM10) from the CAMS-EAC4 satellite reanalysis 
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project (Inness et al., 2019).6 Air pollution data during our study period are reported as a 3-

hour temporal data with a horizontal resolution of 0.75 x 0.75 degrees grid (approximately 80 

Km).7 We first construct the daily average measure of particulate matter and then aggregate it 

to obtain the monthly means at the parcel level. For the purposes of our analysis, we 

construct a 36-month rolling average of PM10 as a measure of dust exposure and map it to 

the farmland sales month-year.8 Our main explanatory variable in the main results is coarse 

particulate matter, PM10. The average PM10 level during our study period is 21.56 𝜇𝑔/𝑚4, 

with a maximum value of 47 𝜇𝑔/𝑚4(as shown in Panel B of Table 1). Next, we obtained 

daily ozone O3 and nitrogen dioxide NO2 concentrations data from the Environmental 

Protection Agency’s (EPA) Air Quality System monitoring site. 9 

Our identification strategy relies on the direction of wind. Particularly, for each parcel, 

the number of days when the wind direction is associated with high pollution (polluting 

winds) and the number of days when the wind direction is associated with low pollution 

(clean winds).10 For information on clean and polluting winds, we obtain the magnitude of 

10-meter wind vector from the CAMS-EAC4 satellite reanalysis project. We use pre-samples 

 
6 Although not shown, we also use daily interpolation pollution data from the monitoring station under the 
Air Quality and Meteorological Information System of the California Air Resources Board (CARB) as a 
robustness check. The main results are robust when using interpolated pollution levels. 
7 Air pollution data is available at https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-global-
reanalysis-eac4?tab=form.  
8 We believe that a 36-month moving average is better suited to identify heterogeneous dust exposure, and 
for the purposes of computational efficiency, we limit ourselves to 36-month average pollution levels. 
 
9 Data is available at https://aqs.epa.gov/aqsweb/airdata/download_files.html  
10 Following Dechezleprêtre et al., (2019), we calculated the number of days that wind originates from 
each of eight octants in each year between 2007 and 2009. To establish the rank, we link daily pollution 
and wind direction. The direction of wind that is linked to the lowest pollution level is given the number 
1, while the direction of wind that is linked to the most pollution is given the number 8. We combine rank 
1, 2, and 3 to create clean winds, while rank 6, 7, and 8 to create polluting winds, relative to rank 4 and 5. 
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from 2007–2009 to construct the number of clean and polluting days associated with low- 

and high-levels of pollution, in the spirit of (Dechezleprêtre et al., 2019). Importantly for our 

identification, the variation in wind directions is high, both temporally and spatially. 

3.3. Climate data 

Following the literature (e.g., Jackson et al., (2012); H. Lee & Sumner, (2015)), we use daily 

minimum and maximum temperature and precipitation data for the years 1981–2017 from the 

PRISM (PRISM Climate Group, 2014) to derive 29-year moving averages of degrees-days 

for summer (April–August) and winter (November through May of the next year), total 

precipitation, and chill hours in winter.11 Panel C of Table 1 provides summary statistics for 

all climate variables used in this study. The number of degree days in summer is more than 

twice as high as in winter. During our study period, on average, there were 2,079-degree days 

in summer and 977-degree days in winter. The long-term average total precipitation was 334 

mm. In winter, the valley accumulates 983 long-term chill hours, on average. Although 

climate change is occurring in Central Valley, the cross-sectional variation in climate has 

remained stable over the study period (as shown in Appendix Table A1). 

3.4. Land quality 

We link the farm to the land capability class (LCC), a global land evaluation ranking that 

groups soils based on their potential for agricultural and other uses. The LCC is used to 

measure land quality. We obtained LCC data for California from the California Soil Resource 

Lab at UC Davis, which is available in grid cells of 800 meters (Walkinshaw et al., 2023).12 

 
11 Chill hours are calculated from November to February of the next year. Appendix B provides more 
details about how we calculated the climate variables used in our analysis. 
12 LCC data is available at https://casoilresource.lawr.ucdavis.edu/soil-properties/. 
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LCC has eight classes. As we move along the land capability classes, from class I through 

VIII, the constraints on soil suitability for crop cultivation also increase. The constraints in 

LCC are characterized by soil erosion and runoff, excess water, root zone depth, climate 

limitations, and limitations on mechanized farming activity. Class I soil has a few limitations 

that do not restrict its use for crop cultivation, while class VIII soil has severe limitations that 

reduce the choice of plants and increase the need for special conservation practices. 

To assess a parcel’s suitability for agricultural production, we construct one indicator for 

high-quality land (LCC12: combined classes 1 and 2) and two indicators for lower-quality 

land: LCC34: combined classes 3 and 4 for low-quality land, and LCC5678: combined 

classes 5 through 8 for poor-quality land). On average, more than half of the sample is on 

high-quality land (53.08%), 43.85% of the sample is on low-quality land, and only 3.07% of 

the sample is on the poor-quality land. 

3.5. Topographical characteristics and other covariates 

We obtain the elevation and slope of parcels at a 30-meter grid cell using the U.S. Geological 

Survey (USGS) National Elevation Data. Following the literature, the analysis also includes 

the number of wells serving a parcel and an indicator of whether parcels are within an 

irrigation district service area, which are sourced from the California Department of Water 
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Resources to capture parcel-specific irrigation capacities. About 40% of parcels in our 

sample have at least access to one well, and 25% of parcels are not served by any irrigation 

districts. In addition, we include the parcel-specific distance from the nearest city center to 

partially control for urban pressures on farmland.  

4. Methodology 

We use publicly available pollution data, and farmland sale values data from private vendors 

in California to quantify the net impact of particulate matter on California agriculture. We 

create a 36-month average coarse particulate variable prior to the sale of farmland as a 

measure of dust exposure. We use a pooled hedonic regression analysis of farmland in the 

Central Valley, and dust levels (PM10, coarse particles) from 2010 to 2017 to estimate the 

economic impacts of climate change and dust particulate exposure on land value. Our 

analysis controls for other pollutants, such as ozone O3 and nitrogen dioxide NO2, that could 

impact crop productivity (Liu & Desai, 2021; Lobell et al., 2022) and, therefore, on farmland 

values.  In doing so, we are able to identify the impact on farmland values from dust 

particulates only. We find evidence of a significant reduction in the value of farmland in our 

study region attributed to higher levels of dust. 

A main empirical challenge is the endogeneity of dust levels in the Ricardian framework 

along with climate variables, as dust levels are also affected by climate. To overcome this 

concern, we conduct a series of checks to address the confounding factors between parcel-

specific dust particulate exposure and climatic factors. Specifically, our empirical strategy 

employs a two-stage approach, similar to Dechezleprêtre et al., (2019). In the first stage, we 

explain the variation in pollution level using the number of days of clean and polluting winds 

as an instrument, and then derive the predicted level of pollution, controlling for a host of 
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weather variables. In the second stage, we use this predicted pollution level as our main 

explanatory variable in the Ricardian model to estimate the effect of dust levels on farmland 

market in our study region. This approach enables us to account for pollution-weather 

covariation and we also take advantage of the residuals from the first stage to reduce omitted 

variable bias.     

Our specification includes month- and year-of-sale fixed effects that control for parcel-

specific time-varying factors, climate, and non-climate variables. Climate variables include 

29-year moving averages of degree-days during summer and winter, total precipitation, and 

chill hours during winter. Non-climate variables include parcel-specific characteristics, such 

as land quality, topographic characteristics, and other covariates standard in the Ricardian 

literature. We estimate the interaction effect between PM and climate factors and explore the 

non-linear impact of PM level and climate factors on the sale price of farmland. Furthermore, 

our results are robust to nonfarm omitted variable bias. We utilize the appraisal value of the 

farmland, a hypothetical value that does not capitalize returns from expected nonfarm land 

use conversion (Bigelow & Kuethe, 2023), as an alternative dependent variable in the 

hedonic model (Ma & Swinton, 2012). The appraisal value of the land is based on potential 

returns from crop production in a given year and does not capitalize future returns from land 

use conversion for nonfarm purposes. The difference between the farmland sale price and the 

appraisal value of the land in the sale year may be considered as the expected value arising 

from conversion to nonfarm land use. We exploit the value obtained from this difference in 

our analysis to detect the presence of nonfarm influences on the farmland market in our study 

region. 
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5. Empirical Results 

This section demonstrates the relationship between dust levels and farmland values. First, we 

present the correlation between farmland price and land appraisal value with pollution levels. 

Second, we present our main empirical results. Finally, we perform robustness checks.  

 Figure 1 presents the correlation between farmland values and appraisal values within the 

eighteen counties in California that make up the Central Valley over time. Pollution levels 

had a positive correlation with both farmland sale prices and appraisal values in the study 

region during the study period. Although the magnitude of correlation coefficient for the 

farmland sale price compared to the appraisal value is lower until 2013, it then becomes 

higher and remains higher throughout the remaining period. The variation in pollution levels 

in the study region coincides with the variations in the appraisal values and in the farmland 

sale price. Initially, PM10 declined during the early study period, then increased in 2014, and 

is continuing to rise.  

Farmland prices experienced a gradual increase over time, but in 2015, they saw a spike 

of almost $6,000 to $27,876 from $21,774 in 2014, then declined to $24,033 in 2015 (as 

shown in Appendix Table A1). The appraisal value of land has been increasing, except for a 

slight decline in 2014 and 2015. The spatial variation in average farmland value per acre and 

pollution levels in the study region during the study period is shown in Appendix Figure 1. 

The average pollution levels in the valley have a similar spatial distribution to the average 

farmland value per acre. In particular, in the central and southern regions of the San Joaquin 

Valley, where high concentrations of pollution are prevalent, high farmland value per acre is 

also present. 
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Next, to estimate the impact of dust levels on farmland values, we employ a pooled 

Ricardian model that takes into account both climatic and non-climatic variables. Note that 

the unit of observation is the parcel that was sold in the Central Valley from 2010 to 2017. 

The dependent variable is the log of land value per acre. The primary explanatory variable is 

the daily PM10 concentration at the parcel level. Table 2 presents our main results. In column 

1, we employ Eq. (2) to explore the relationship between farmland value and coarse 

particulate matter, PM10, as our measure of dust level. We note that PM10 exhibits an 

inverse U-shaped relationship with farmland values. This result is evident from the 

coefficient of the quadratic term of coarse dust levels, which is statistically significant and 

negative, suggesting an inverse U-shaped relationship between farmland sale price and 

coarse particulate matter. Column 2 includes other pollutants in Eq. (2) to distinguish the 

effect of particulate matter from those that have been shown to impact crop health and yields. 

The sign and significance of the outcome of interest are the same as in column 1, though the 

effect size is slightly smaller than in column 1. 

Columns 3 and 4 are obtained by employing residuals (an additional regressor) and 

predicted values (the main explanatory variable) from the first stage regression, respectively. 

The estimated coefficient on residuals (Column 3 of Table 2 obtain from the Eq. (5)) from the 

first stage indicates that the endogeneity bias is small and in the downward direction, 

although the estimated coefficient is statistically insignificant at conventional level of 

significance. The interaction term between residuals and observed dust exposure is 

indistinguishable from zero and does not have any significance in our analysis.     

Column 4 presents our preferred specification obtained from Eq. (3). We first calculate 

predicted PM10 by regressing observed PM10 on our instrument—the number of days that 
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wind originates from any of the three cleanest (dirtiest) octants, using pre-sample data from 

2007–2009, which we refer to as clean (polluting) winds. Table 3 presents the first stage 

results obtained from Eq. (4). We explain the variation in PM10 levels by clean and polluting 

winds, controlling for wind speed, precipitation, maximum temperature, relative humidity, 

their interactions, and soil attributes. In addition, we include the land-use share, which 

includes perennial and annual crops, as well as non-cultivated and developed land.  As 

expected, the estimated coefficient for clean winds is negative in the first stage while it is 

positive for polluting winds. Results are similar to the OLS estimates, but with a larger 

effects size.  

The average marginal effect of PM10 on farmland values becomes negative at the 

threshold of 30 𝜇𝑔/𝑚4, and remains negative and statistically significant with higher levels 

of PM10 (as shown in Figure 2). To explore these results further, we calculate the total 

number of days during which the dust level was above 30 𝜇𝑔/𝑚4 in the last 36 months prior 

to the sale of farmland as a measure of extreme dust level exposure. We include this variable 

as an additional regressor in Eq. (3). Column 5 of Table 2 provides estimates of total days 

with higher levels of PM10 concentration. The estimated coefficient is positive and 

significant, but the magnitude is very small and close to zero.   

6. Robustness Checks 

We interpret the previous findings as evidence that higher levels of dust have a negative net 

effect on farmland values. In this section, we address additional concerns about whether 

changes in farmland values in our study region can be attributed to variations in pollution 

levels during our study period. First, we check whether farmland market in our study region 

is vulnerable to potential nonfarm omitted variable bias and second, we cluster standard 
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errors at a regional level, such as irrigation districts, to address spatial dependence in 

farmland values. 

6.1. Ricardian model with an alternative dependent variable: Appraisal value of the land 

First, there may be a concern that nonfarm factors, such as economic development pressures, 

may influence farmland markets in our study region. In that case, the dependent variable with 

farmland sales prices may not be primarily driven by returns to farming. Therefore, the 

Ricardian estimate of dust levels may be biased in a direction that is not known. The Central 

Valley’s primary agricultural land-use may provide assurance that our results are not 

primarily driven by nonfarm influences on the farmland market. In addition, empirically, we 

utilize the appraisal value of agricultural land, which is a hypothetical value that reflects the 

expected near-term agricultural profits and excludes future benefits of nonfarm use, to 

empirically address this concern. This strategy may minimize bias in the presence of nonfarm 

omitted variables.  

In theory, the appraisal value of land should exclude nonfarm pressures. Therefore, the 

Ricardian model should avoid potential nonfarm omitted variable bias by utilizing the 

appraisal value of land per acre as the dependent variable. We first test the potential presence 

of nonfarm omitted variables in our Ricardian model by regressing the difference between 

the farmland sale prices and the appraisal value of land on pollution levels, controlling for 

climatic and non-climatic variables. Second, we replace farmland sales price per acre with 

the appraisal value of agricultural land per acre as a dependent variable in Ricardian 

estimates to measure the effect of dust levels on the farmland market without reflecting 

nonfarm influences caused by expected land use changes. Table 4 presents the result of the 

alternative Ricardian model. In addition to the month and year-of-sale, we include county-
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level fixed effects to account for any county-specific common shocks that may influence the 

assessment of farmland. The estimated coefficient on Column 1 of Table 4 is statistically 

insignificant and suggests that nonfarm omitted variables are not a concern in our study 

region. Columns 2 and 3 of Table 4 show that Ricardian estimates using per-acre appraisal 

value of land as a dependent variable are qualitatively similar to our main results. Column 3 

utilizes the land’s appraisal value without any improvements to only include the land 

component. The estimated coefficient for predicted PM10 remains the same, although the 

order of magnitude has slightly reduced.  

6.2. Standard errors cluster at the regional level: Irrigation districts 

Second, in the main specification, the standard errors are clustered at the parcel level. There 

may be a concern that farmland values and covariates on the right hand side of the main 

specification are spatially dependent. As a result, the standard errors are likely biased 

downward. To address this concern, we cluster the standard errors at the irrigation district 

level to allow for correlation among parcels within the irrigation districts. We associate each 

georeferenced parcel with irrigation districts to achieve this. 2,033 parcels that are not within 

any irrigation districts are not included in this analysis. Column 4 of Table 3 reports the 

results. The estimated coefficients for predicted dust levels are similar to the main results.  

 The findings discussed above support our finding that higher levels of dust have a 

negative impact on farmland values through a negative impact on agriculture in our study 

region. With the data at hand, we are unable to directly examine the observable pathways 

within the agricultural sector, for instance, agricultural labor productivity and crop health and 

yields, through which pollution affects the farmland market in our study region.  

7. Conclusion and Policy Implications 
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Air pollution has been shown in recent studies to significantly decrease crop yields, resulting 

in significant economic losses for perennial crops in California. Due to changing climate 

conditions and the link between increased aridity and increased dust levels, the loss caused 

by air pollution may increase further in the future. Using this new knowledge, we incorporate 

coarse particulate matter, as a dust level indicator, and climate variables in the Ricardian 

framework to estimate the reduced-form effect of dust levels on farmland values in the 

Central Valley of California.  

This paper extends the Ricardian model to include dust particles to estimate the economic 

impacts of climate change-induced dust levels on agricultural land value. We provided causal 

estimates of the effects of coarse dust particulate on farmland values in the Central Valley 

from 2010 to 2017. Using pooled hedonic regression analysis, our results indicate that dust 

levels have a negative net effect (negative effects are larger at higher levels of pollution) on 

farmland values and highly significant with an inverted U-shaped response curve. This 

finding is robust to the use of an alternative Ricardian model that minimizes nonfarm omitted 

variable bias. These findings have important implications for environmental policies. In 

particular, they suggest that environmental assessments should consider the possible impact 

of dust levels on the farmland market. 

Dust levels rise with drought, either due to transported dust (windblown dust 

mobilization) or dust from agricultural operations on less-irrigated farmland that increases as 

a result of drier soil, or dust from poorly managed fallow land. The Central Valley growers 

may have limited options for minimizing dust levels on plants, which could potentially 

inhibit plant growth through their reduced ability to respire and process photosynthesis. 

Future climate mitigation policies in agriculture should consider ways to suppress dust (e.g., 
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conservation tillage, mulch cover or surface roughening), and avoid dust at the local and 

regional levels, including on-farm dust mitigation measures (e.g., maintenance of stubble and 

vegetative cover on idle land). 

Particulate matter is complexly interrelated with climate change through warmer 

temperatures and changes in agricultural operations, such as the increase in fallow land. 

Howitt et al. (2015) estimated that large areas of irrigated land in the Central Valley of 

California may be out of production due to prolonged drought, leading to more fallow land in 

the future, which will intensify the problem of dust in agriculture. In addition, recent research 

in the US highlights the negative impact of pollutants on agricultural productivity and global 

food security. In this context, our paper attempts to characterize the effects of windblown 

dust particle exposure on California agriculture and provide policymakers with quantifiable 

estimates of potential loss in farmland values. This study contributes, in such respect, to the 

environmental economics and hedonic literature. A main limitation of this study is that we 

are unable to independently assess several mechanisms through which pollution could affect 

the farmland market, which warrants further research. 
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Table 1. Summary Statistics (N = 9,300) 

Variable Mean Std. Dev. Min. Max. 

Panel A: Agricultural parcels 

Farmland sale price per acre 20,683 30,003 122 210,555 

Appraisal value of the land per acre 6,543 6,948 42 37,454 

Parcel size (in acre) 104.66 287.25 1.00 14972.82 

Panel B: Air pollution from 36-month moving average 

Coarse particulate matter (PM10, 𝜇𝑔/𝑚4) 21.56 5.08 10.66 46.93 

Panel C: Other pollutants  

Ozone (parts per million) 0.03 0.004 0.01 0.04 

Nitrogen dioxide (parts per billion) 10.22 1.16 5.78 14.80 

Panel D: Long-term climate normal from 29-year moving averages 

Growing degree days (thousands, summer) 2.08 0.13 0.90 2.32 

Growing degree days (thousands, winter) 0.98 0.08 0.13 1.27 

Annual precipitation (100 mm) 3.34 1.39 1.06 18.40 

Chill hours (100 hours, winter) 9.83 0.95 6.34 24.00 

Panel E: Land capability class     

Land capability class (class 1 or 2) 0.53 0.50 0 1 

Land capability class (class 3 or 4) 0.44 0.50 0 1 

Land capability class (class 5 through 8) 0.03 0.17 0 1 

Panel F: Topographical characteristics     

Elevation (m) 93.19 130.91 -5.18 2067.35 

Slope (degree) 0.84 2.19 0.00 32.24 
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Coordinate latitude 37.17 1.19 34.82 40.43 

Panel G: Other covariates     

Distance from nearest city (m) 5714.26 4279.57 52.71 32283.18 

Indicator for access to well water 0.51 0.79 0 21 

Indicator for multi-parcel sale 0.27 0.45 0 1 

Notes: 

[1] All variables are averages at the parcel level over the period 2010–2017. Appendix Table A1 
presents the mean values for each year.  
[2] Climate variables are computed as the twenty-nine-year average of yearly weather variables. 
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Table 2. Impact of dust levels on farmland values: Hedonic estimates 

  Dependent variable: Log (value per acre) 
 [1] [2] [3] [4] [5] 
Coarse particulate matter (PM10, 
𝜇𝑔/𝑚4) 

0.157*** 

(0.023) 
0.144*** 

(0.023) 
0.148*** 
(0.043) 

  

Coarse particulate matter square -0.003*** 

(0.0004) 
-0.002*** 

(0.0005) 
-0.002*** 
(0.001) 

  

Residual   -0.009 

(0.025) 
  

PM10 x residual   -0.0003 
(0.001) 

  

Predicted PM10    0.222*** 
(0.051) 

0.221*** 
(0.051) 

Predicted PM10 square    -0.004*** 

(0.001) 
-0.004*** 

(0.001) 
Number of days when PM10 > 30 𝜇𝑔/𝑚4   0.001 

(0.0004) 
Other pollutants   
Ozone (parts per million)  18.476 

(51.531) 
15.998 

(51.693) 
37.039 

(51.834) 
39.387 

(51.887) 
Ozone square  4.017 

(860.489) 
40.716 

(862.324) 
-686.567 
(863.850) 

-660.073 
(864.108) 

Nitrogen dioxide (parts per billion)  -0.073 
(0.129) 

-0.062 
(0.129) 

-0.135 
(0.130) 

-0.125 
(0.129) 

Nitrogen dioxide square  0.008 
(0.006) 

0.008 
(0.006) 

0.011* 
(0.006) 

0.010 
(0.006) 

Long-term climate normal from 29-year moving averages  
Growing degree days (thousands, 
summer) 

-4.522 
(6.246) 

2.384 
(6.492) 

3.554 
(6.577) 

-2.362 
(6.360) 

-0.390 
(6.557) 

Growing degree days square 0.216 
(1.462) 

-1.401 
(1.521) 

-1.704 
(1.548) 

-0.337 
(1.493) 

-0.819 
(1.542) 

Growing degree days (thousands, 
winter) 

13.958* 

(7.765) 
10.791 

(7.784) 
10.308 
(7.855) 

14.948* 

(7.728) 
14.495* 

(7.766) 
Growing degree days square -5.390 

(3.513) 
-4.057 
(3.525) 

-3.799 
(3.575) 

-6.356* 

(3.483) 
-6.004* 

(3.506) 
Annual precipitation (100 mm) -0.117 

(0.306) 
0.064 

(0.317) 
0.007 

(0.321) 
-0.126 
(0.312) 

-0.105 
(0.314) 

Annual precipitation square -0.046*** 

(0.255) 
-0.045*** 

(0.007) 
-0.044*** 

(0.007) 
-0.045*** 

(0.007) 
-0.046*** 

(0.007) 
Chill hours (100 hours, winter) -0.620** 

(0.291) 
-0.637** 

(0.292) 
-0.665** 

(0.298) 
-0.846*** 

(0.288) 
-0.847** 

(0.290) 
Chill hours square 0.030** 

(0.014) 
0.031** 

(0.014) 
0.032** 

(0.014) 
0.040*** 

(0.014) 
0.041*** 

(0.014) 
Growing degree days summer x 
annual precipitation 

1.421*** 

(0.255) 
1.240*** 

(0.262) 
1.262*** 

(0.263) 
1.444*** 

(0.260) 
1.438*** 

(0.261) 
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Growing degree days winter x 
annual precipitation 

-2.225*** 

(0.343) 
-2.065*** 

(0.345) 
-2.074*** 

(0.345) 
-2.256*** 

(0.346) 
-2.273*** 

(0.348) 
Land capability class (class 1 or 2, base case)  
Land capability class (class 3 or 4) -0.154*** 

(0.026) 
-0.162*** 

(0.026) 
-0.162*** 

(0.026) 
-0.146*** 

(0.026) 
-0.146*** 

(0.026) 
Land capability class (class 5 
through 8) 

-0.675*** 

(0.103) 
-0.699*** 

(0.104) 
-0.692*** 

(0.104) 
-0.681*** 

(0.104) 
-0.677*** 

(0.104) 
Topographical characteristics  
Elevation (m) -0.002*** 

(0.0004) 
-0.002*** 

(0.0004) 
-0.002*** 

(0.0004) 
-0.003*** 

(0.0004) 
-0.003*** 

(0.0004) 
Slope (degree) -0.068*** 

(0.011) 
-0.066*** 

(0.011) 
-0.066*** 

(0.011) 
-0.062*** 

(0.011) 
-0.062*** 

(0.011) 
Coordinate latitude -0.441*** 

(0.047) 
-0.396*** 

(0.049) 
-0.373*** 

(0.049) 
-0.453*** 

(0.048) 
-0.440*** 

(0.049) 
Other covariates      
Distance from nearest city (m) -

0.0001*** 
(4.09e-

06) 

-
0.0001*** 
(4.09e-

06) 

-
0.0001*** 
(4.10e-

06) 

-
0.0001*** 
(4.14e-

06) 

-
0.0001*** 
(4.12e-

06) 
Indicator for access to well water  -0.119*** 

(0.021) 
-0.120*** 

(0.021) 
-0.120*** 

(0.021) 
-0.116*** 

(0.021) 
-0.116*** 

(0.021) 
Indicator for multi-parcel sale 0.097*** 

(0.033) 
0.103*** 

(0.033) 
0.103*** 

(0.033) 
0.097*** 

(0.033) 
0.097*** 

(0.033) 
Month of sale FEs Yes Yes Yes Yes Yes 
Year of sale FEs Yes Yes Yes Yes Yes 
Observations 9,300 9,300 9,300 9,300 9,300 
Adjusted R-squared 0.243 0.246 0.247 0.241 0.241 

Notes: 
[1] Columns 3 and 4 are obtained by employing residuals (an additional regressor) and predicted values 
(the main explanatory variable) from the first stage regression. Column 4 presents our preferred 
specification. In column 5, the number of days during the 36-month period before farmland is sold where 
PM10 exceeds 30 units in our study area. The average number of days is 137. 
[2] Standard errors in parentheses are clustered at the parcel-level. 
[3] Level of significance: * p < 0.10, ** p < 0.05, *** p < 0.01. 
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Table 3. First stage regression 

Dependent variable: PM10 Coef. SE 
Clean winds -0.002** (0.001) 
Polluting winds 0.010*** (0.001) 
Max. temperature bin: Bin 1 [< 15-degrees Celsius, base case] 
Bin 2: [15,20) -9.724*** (2.560) 
Bin 3: [20, 25) 4.567** (1.813) 
Bin 4: [25, 30) -10.571*** (2.010) 
Bin 5: [30+] -0.538 (1.173) 
Other weather controls   
Precipitation (mm) 0.026* (0.014) 
Precipitation square -0.0004** (0.0002) 
Wind speed (mph) 12.522*** (1.015) 
Wind speed square -2.198*** (0.159) 
Relative humidity (%) 0.475 (0.829) 
Relative humidity square -0.011*** (0.003) 
Temp. bin 2 x relative humidity 0.164*** (0.044) 
Temp. bin 3 x relative humidity -0.119*** (0.031) 
Temp. bin 4 x relative humidity 0.196*** (0.034) 
Temp. bin 5 x relative humidity -0.008 (0.021) 
Land-use share   
Perennial crops share 1.635*** (0.204) 
Annual crops share 0.420** (0.201) 
Non-cultivated crops share -0.809*** (0.261) 
Developed share 1.968*** (0.627) 
Soil attributes   
Soil erosion K factor -376.704** (156.448) 
Saturated hydraulic conductivity (mm/s) 8.943** (4.222) 
Water storage capacity (cm) -0.537** (0.264) 
Soil organic matter (Kg/m2) 3.440 (1.156) 
Month of sale FEs Yes  
Year of sale FEs Yes  
Observations 9,300  
Adjusted R-squared 0.333  

Notes: 
[1] Clean (polluting) winds are the number of days that wind originates from any of the three cleanest 
(dirtiest) octants, using pre-sample data from 2007–2009. 
[2] We construct land-use shares by dividing the shares of each crop within a parcel by the total parcel 
size. The cropland data is obtained by Cropland Data Layer (CDL). Non-cultivated crop share includes 
fallow and idle land, as well as natural vegetation. 
[3] Standard errors in parentheses are clustered at the parcel-level. 
[4] Level of significance: * p < 0.10, ** p < 0.05, *** p < 0.01. 
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Table 4. Robustness Checks  
 
 Difference between 

sales price and the 
appraisal value 

Log (per-acre 
appraisal value 

of the land) 
 

Log (per-acre appraisal 
value of the land 

without improvement) 

Log 
(value per 

acre) 

 [1] [2] [3] [4] 
Predicted 
PM10 

-56269.184 
(170945.195) 

0.295*** 
(0.045) 

0.188*** 
(0.043) 

0.255*** 
(0.076) 

Predicted 
PM10 square 

1054.054 
(3656.384) 

-0.005*** 
(0.001) 

-0.004*** 
(0.001) 

-0.005*** 
(0.002) 

Climate 
Controls 

Yes Yes Yes Yes 

Non-climate 
Controls 

Yes Yes Yes Yes 

County FEs Yes Yes Yes No 
Month of sale 
FEs 

Yes Yes Yes Yes 

Year of sale 
FEs 

Yes Yes Yes Yes 

Observations 9300 9300 9300 6957 
Adjusted R-
squared 

0.192 0.414 0.411 0.269 

Mean 
dependent 
variable 

980,296 8.196 7.741 9.276 

Notes: 
[1] The appraised value of the land, adjusted for inflation in 2017 dollars, includes the value of 
improvements made to the land. 
[2] In Column 4, the sample size is restricted to parcels that are associated with irrigation districts. 
[2] Climate variables include degree days during summer and winter, precipitation, chill hours in winter 
(and their squared terms), and the interaction between degree days and precipitation. The list of non-
climatic variables includes soil quality, topographical characteristics, and other covariates. See Table 1 for 
more specifics. 
[3] Standard errors in parentheses are clustered at the parcel-level in columns 1-3 and at the irrigation 
district in column 4. 
[4] Level of significance: *** p < 0.01. 
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Figure 1. The correlation between pollution levels within the eighteen counties of the Central Valley of 
California 
 
Note: The within-county Pearson correlation is computed from parcel-level deviations from the county 
mean of farmland sale price and land appraisal value. The 95% confidence interval is obtained from 1,000 
bootstraps.    
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Figure 2. Average marginal effects of PM10 on farmland values. 
 
Note: The downward slope of the estimated effect of PM10 on farmland values becomes 
negative and significant at the threshold of 30 𝜇𝑔/𝑚!, and remains negative and statistically 
significant with higher levels of PM10. The dots represent the 95% confidence interval. 
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