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Abstract 

Climate change is expected to exacerbate water scarcity in the agricultural sector, which is 

already a critical concern. This article investigates the reaction of farmers in California to 

drought and institutional interventions regarding the adoption of various irrigation technologies 

and changes in land use. The study employs a fixed effect regression model to analyze data from 

all 58 California counties from 2000-2020. The results reveal that the adoption of efficient 

irrigation technologies for all crop categories in the study area increases significantly under 

extreme or exceptional drought. Furthermore, the results indicate that moderate or severe and 

extreme or exceptional adversely affect harvested acres of forage crops. We do not find any 

impact on harvested acres for other crop categories. We find that the passage of the sustainable 

groundwater management act in 2014 is associated with increased adoption of efficient irrigation 

technology. Moreover, we find that the act has a negative impact on harvested acres of forage 

crops. The findings of this study extend the existing literature on farmers' responses to drought 

and institutional interventions and offer insights to policymakers and stakeholders for enhancing 

water resource management and agricultural sustainability. 
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1. Introduction 

The concentration of greenhouse gases (GHG) in the atmosphere is expected to increase at an 

unprecedented rate and scale, significantly affecting agricultural production (Pörtner et al., 

2022). According to Thamo et al. (2017), alterations in climate-related aspects, including 

temperature, precipitation, and atmospheric CO2 concentration, can potentially impact farming 

yield and profitability. Agriculture's dependence on water supplies and climate renders it more 

susceptible to the effects of climate change, making it one of the most vulnerable sectors (ERS 

USDA, 2018a).  

 Climate change is expected to worsen the issue of water scarcity in the agricultural 

sector, which is already a pressing concern. This poses a significant challenge for farmers to 

manage their water resources efficiently and effectively. Farmers in irrigated agricultural 

production systems can adjust to climate change in numerous ways (i) by reducing the total 

irrigated acreage or taking land out of production (i.e., leaving it unplanted - fallowed) (Shi & 

Wu, 2019); (ii) changing crop types and variants from more to less water-intensive crops, or 

more profitable crops by deciding how much land to allocate for planting as per crop types (i.e., 

eliminating or reducing the acreage of certain crops and increasing acreage of other crops) 

(Sumner et al., 2021); (iii) modifying the irrigation technology and the amount of irrigation water 

used per acre (Dinar et al., 2017); and (iv) any combination of these strategies. Some of these 

adaptations are short-term reactions that can be changed during the growing season, while others 

are long-term investments that are almost irreversible and fixed. As a result, adjustments made 

before the growing season have implications for long-term investments. In contrast, climate and 

water shortage realizations influence short-term reactions during the growing season (Shi et al., 

2022). These adaptive strategies must be implemented efficiently and effectively to ensure the 

sustainability of the agricultural sector in the face of climate change. 

 This study investigates how farmers responded to drought and institutional interventions 

by adopting different irrigation technologies and changing cropping patterns over time and 

across space in California counties. The majority of the existing literature has focused on broader 

geographical regions such as US Pacific Northwest (Shi et al 2022), the US West Coast (Shi et 

al, 2019; Olen et al 2016), US Western states (Frisvold & Deva, 2013) and US Southern region 

(Cho et al 2021). This study narrows the focus to county-level analysis of the state of California, 

providing a more granular perspective on the impacts of climate change on agricultural practices. 
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This paper contributes to the existing literature on California by (i) providing a summary 

of the changes in the proportions of various irrigation technologies between 2001 and 2016; (ii) 

summarizing the trends in cropping patterns from 2000 to 2020; (iii) conducting an empirical 

investigation into the impact of drought on the adoption of different irrigation technologies and 

the changes of cropping patterns; and (iv) empirically evaluating the consequences of the 

constraints imposed by the Sustainable Groundwater Management Act (SGMA) on the adoption 

of different irrigation methods and decisions of land use1. To achieve these objectives, we have 

gathered data on various irrigation methods usage in California for 2001, 2010, and 2016. 

Additionally, we have compiled twenty-one years of annual crop acreage statistics from 2000 to 

2020, as well as weekly U.S. Drought Monitor (USDM) drought data.  

The present investigation employs a collection of data obtained by matching the 

California Department of Water Resources (DWR) Statewide Irrigation Method Survey data and 

crop acreage data obtained from the annual Crop Reports compiled by the California County 

Agricultural Commissioners with drought intensity categorizations in the USDM at the county 

level. The analysis employs panel data models with fixed effects, which account for spatial and 

temporal variability in drought conditions, adoption of irrigation technologies, and harvested 

acreage. The study estimates the impact of drought and SGMA on the adoption of irrigation 

technologies and harvested acreage in California. The investigation also conducts distinct 

regressions for crop categories, such as field crops, forage, vegetables and melons, and fruits, 

trees, and nuts, as the impact of drought on harvested acreage and adoption of irrigation 

technologies is expected to differ across these categories.  

The findings suggest that extreme or exceptional drought has a  positive and statistically 

significant influence on the adoption of efficient irrigation technologies. It is observed that the 

share of sprinklers, drip, and subsurface drip, compared to surface irrigation, increases for all 

crops, as well as crop categories such as field crops, vegetables and melons, and fruits, trees, and 

nuts, with each additional week of extreme or exceptional drought. The adoption of efficient 

irrigation technologies shows a small and significant effect of additional weeks of drought for 

moderate or severe drought levels. Furthermore, the study reveals adverse and statistically 

 
1 We could access the latest data for Irrigation technology until the year 2016. Given we do not have the most recent 

survey data on irrigation technology, our findings need to be interpreted with caution. 
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significant impacts of drought on forage crops harvested acres for moderate or severe drought 

and extreme or exceptional drought for each additional week. Additionally, it is found that 

implementation of SGMA is associated with a statistically significant increase in the adoption of 

sprinklers, drip, and subsurface irrigation, compared to surface irrigation for all crops, field 

crops, vegetables and melons, and fruits, trees, and nuts, after controlling for drought levels. 

Moreover, SGMA leads to a negative estimated coefficient in harvested acres of forage crops 

after controlling for drought levels. Our findings are robust to alternative drought measures, 

which yield comparable estimates, reinforcing the reliability of the results. 

The rest of this paper is organized as follows. The next section contains a brief review of 

existing studies on the relationship between droughts and the adoption of irrigation technology 

and land use patterns. Section 3 develops an analytical framework, and Section 4 discusses the 

hypothesis. Section 5 presents the estimation strategies, and Section 6 describes the data. Section 

7 discusses the results, and Section 8 concludes and provides policy implications. 

2. Literature Review 

There is a large and well-developed body of literature on adopting irrigation technologies. Many 

studies that simulate long-term investments reveal that financial and physical factors, including 

groundwater well depth, water supply, and pricing uncertainty, influence farmers' decisions to 

embrace new technologies. All of these factors are considered when making long-term 

investment decisions (Carey and Zilberman, 2002, Caswell and Zilberman, 1986, Li, et al., 

2019). Numerous studies have discovered that climate significantly influences the choice of 

irrigation technology since expectations for the climate (such as temperature and precipitation) 

indicate varying technological efficacy (Dinar and Yaron, 1990, Fleischer, et al., 2011, Frisvold 

and Deva, 2013). However, there needs to be more knowledge about how farmers modify water 

usage and irrigation choices to reduce the effects of climate change, particularly crop loss from 

extreme weather events. There are a few noticeable exceptions. Using state-level farm-size 

stratified data, Frisvold and Deva (2013) investigated how climate influences allocating land 

between the sprinkler and gravity-flow methods. They discovered that climate factors had 

significantly affected decisions to adopt irrigation technologies. Olen, et al. (2016) examine 

irrigation decisions made at the farm level and find that producers of orchards and vineyards are 
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more likely to select sprinkler irrigation and apply additional quantities of water to mitigate 

damage from drought, extreme heat, or freeze. Schuck, et al. (2005) find that in response to 

droughts, a larger share of farms adopts more technically efficient irrigation systems to maintain 

crop yield. 

Land usage and climate change are associated. Numerous studies have examined this 

link, which shows that changes in net greenhouse gas emissions, as well as changes in human 

and natural system land use, are both influenced by climate and policy considerations (Cho and 

McCarl, 2021). The relationship between climate change and land use has two strands in the 

literature. One of the themes is how land use affects greenhouse gas emissions, which in turn 

contribute to climate change. The other strand investigates how land use is impacted by climate 

change (Mendelsohn and Dinar, 2009). Climate change can influence the yield of agricultural 

commodities, land value, water availability, infrastructure, and environmental quality. 

Landowners exposed to such hazards may be motivated to alter land allocations as a climate 

change adaptation mechanism, which can lead to changes in land use in addition to changes in 

the natural land cover (Mendelsohn and Dinar, 2009). Reilly, et al. (2003) investigated how 

climatic and policy variables influenced agricultural land use and expected changes under several 

future climate change scenarios. Mu, et al. (2013) analyzed how land use changes from crops to 

grazing when climatic conditions become harsher. Numerous additional studies have focused on 

how crop mix and agricultural land use are affected by climate change. For instance, a set of 

studies suggests that acreage allotted to relatively low-value and water-intensive crops is reduced 

as a result of anticipated climate and water supply fluctuations (Connor, et al., 2009, Manning, et 

al., 2017, Moore and Negri, 1992, Peck, et al., 2012). 

This paper contributes to the literature by examining how farmers react to drought and 

institutional interventions by analyzing changes in crop mix and irrigation technology adoption 

over time and across California’s counties. The study limits its focus to the county-level 

examination, thereby offering a more comprehensive perspective on the impact of climate 

change on agricultural practices. By utilizing panel data for 58 counties over two decades, this 

study enables the estimation of the impacts of droughts and institutional interventions on 

agricultural practices, filling a gap in existing literature (Sumner et al 2021, Rodrigue-Flores et al 

2021, Carman 2021). Moreover, this study provides causal estimates for both long-run decisions, 
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such as the adoption of efficient irrigation technologies, and short-run responses, such as changes 

in cropping patterns. Additionally, we contribute to the growing field of agricultural economics 

by utilizing three different drought measures (described in section 5.4), of which two methods 

have not been widely used in previous studies on this topic. By employing this methodology, we 

can provide robust and reliable estimates of droughts' impacts on California's agricultural 

practices. In turn, this contributes to a better understanding of how farmers respond to drought, 

which can inform the development of more effective policies to support sustainable and resilient 

agricultural practices in the face of climate change. 

3. Analytical Framework 

Consider a representative farmer who is endowed with farmland L. They have to decide on how 

many acreages of land to harvest in a given year. Assuming that the land can be put to two uses, 

that is, either to harvest or leave it fallow. Let 𝛼 denote the share of land used for harvesting, and 

the remaining share corresponds to the land which is left fallow: 

𝐿 = 𝛼𝐿 + (1 −  𝛼)𝐿               (1) 

𝐹𝑎𝑙𝑙𝑜𝑤 𝑙𝑎𝑛𝑑 = (1 −  𝛼)𝐿     (2) 

The share 𝛼 depends on several demand-side factors, such as rising per capita income, 

rate of urbanization, or consumer demand, and supply-side factors, such as the availability of 

labor, irrigation technologies, drought incidences, short-run and long-run fluctuations, and 

exogenous shocks. Earlier literature discusses in great detail that the economic life span of 

efficient irrigation technologies is several decades (Dinar, et al., 1992). Therefore, we assume 

that a farmer’s decision to adopt efficient irrigation technologies is a long-term choice and, 

therefore, remains fixed during the growing season. The choice of harvested acres for annual 

crops, however, is a short-term response and can be adjusted during the growing season. 

Similarly, decision-making for perennial crops is a long-term choice and, hence cannot be 

adjusted during the growing season.  

Adopting irrigation technology heavily depends on climatic projections made before the 

growing season (Shi et al 2022), whereas short-run reactions depend on whether realizations 

throughout the growing season. Long-term irrigation technology, which is predetermined before 
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making short-run responses throughout the growing season, is also a requirement for short-run 

responses. According to the standard agronomic literature, our multi-crop production model 

includes crop-specific equations for the adoption of irrigation technology (IT) and for harvested 

acres (HA) and is specified as 

𝐼𝑇 = 𝑎(𝑊, 𝑆, 𝑃)      (3) 

𝐻𝐴 = 𝑏(𝑊, 𝑆, 𝑃)      (4) 

In equations (3) and (4), the variable W represents water availability, includes 

temperature and precipitation, and is captured through the inclusion of drought measures. The 

soil quality variable is denoted by S, and we assume it remains constant in the short run. 

Therefore, we will not capture changes in soil quality in our estimation equation. The variable P 

encompasses policy shock variables, including taxes, land use constraints, price shocks, and 

institutional reforms such as implementing the 2014 Sustainable Groundwater Management Act 

(SGMA). In this article, we are using SGMA as a policy shock variable. 

A farmer also incorporates several inputs (m) for crop production, such as labor, 

machinery, fertilizer, etc. Let X denote the total input cost used in crop production, and E(p) 

denotes the vector of expected crop prices by the end of the harvesting season. Being a rational 

(forward-looking) decisionmaker, the representative farmer would be interested in maximizing 

her utility. Let the utility function be denoted as 𝑈. 𝑅 measures the expected revenue from mixed 

crop farming operation, and X denotes the total input cost used. The utility-maximizing problem 

for the representative farmer is:  

𝑀𝑎𝑥 𝑈 = 𝑅 − 𝑋                   (5) 

Ruling out the corner solution, an optimal solution will be determined.  

4. Hypothesis 

Based on the literature reviewed and the analytical framework described in section 3, we frame 

several hypotheses to be inferred using data collected from 58 California countries over the past 

two decades. 
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Hypothesis 1: Droughts may result in a reduction in farmland and total cropland, a decline in 

certain field crop acreage, and an increase in tree nuts and vineyard acreage.  

 

During the period 1980-2021, the state of California experienced five periods of droughts 

(1987-92, 2001-02, 2007-09, 2012-16, and 2020-23). This has resulted in relative water scarcity 

in various counties and over-pumping of groundwater with time. Therefore, we expect that the 

farmers adapt to these changes and must allocate water to the high economic valued crops during 

drought. Consequently, there might be a reduction of land in farms and total cropland over time 

and in certain crop acreage, whereas there is an increase in tree crops and vineyard acreage 

(Sumner et al., 2021). According to the literature, evidence suggests that in California, the 

expansion of tree nut acreage has outpaced the decline of field crop acreage, implying that tree 

nuts have been replacing other crops as well. Nonetheless, current trends indicate that although a 

portion of the land that has shifted away from field crops may have been utilized for the 

cultivation of vegetables, fruits, or other crops, a significant proportion may have remained 

unplanted, i.e., fallowed land (Sumner et al., 2021). 

 

Hypothesis 2: Farmers may have substituted less efficient irrigation technologies with more 

efficient ones. 

There are multiple factors that influence the adoption of more efficient irrigation 

technologies, such as scarcity of irrigation water or being able to expand the irrigated area with 

the same amount of available water. The rationale underlying the hypothesis is that during 

drought periods, scarcity of irrigation water increases. Therefore, over time, farmers are likely to 

adopt technologies that improve irrigation efficiency (Dinar et al., 2017). We expect that farmers 

may have substituted less efficient irrigation technologies with more efficient ones, especially in 

more water-scarce counties. We are interested in analyzing the overall trend in the adoption of 

irrigation technologies and changes in usage across technologies in all fifty-eight California 

counties. 

Hypothesis 3: Implementation of SGMA might 

(a) increase fallowed land acreage. 

(b) lead to an increase in the utilization of more efficient irrigation systems. 
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In response to SGMA, we expect more farmers to go out of production. The farmers 

might have to adapt to the circumstances created by expanding government initiatives and 

policies. The state legislature passed the Sustainable Groundwater Management Act (SGMA) in 

2014. By 2040, groundwater sustainability (which is prevented by avoiding six undesired 

consequences2) must be achieved, according to SGMA, which mandates that local groundwater 

sustainability agencies (GSAs) create and implement sustainable water management strategies. 

In many areas of the state, sustainable groundwater use will require replacing present irrigated 

crops with less water-intensive crops, or land must be removed from cultivation (EDF, 2021). To 

comply with the sustainability mandate of the SGMA and address the general increase in water 

shortages, it is predicted that over the next few decades, at least 500,000 to over 1 million acres, 

largely in the San Joaquin Valley, may need to be taken out of production (Hanak, et al., 2019). 

Future farming practices, including drip irrigation, water monitoring technologies, and soil 

moisture sensors, are projected to be adopted by most farmers (Niles and Wagner, 2017). The 

implementation of SGMA could likely change cropping patterns and increase the use of more 

efficient irrigation systems. Therefore, we expect an overall increase in fallowed land acreage. 

We also intend to investigate whether the implementation of SGMA led to the replacement of 

furrow irrigation with drip, sprinklers, or micro-sprinklers across California counties. 

5. Data 

5.1. NASS Crop Acreage Data 

California-specific statistics are reported annually by the National Agricultural Statistics Service 

(NASS). The report is based on the California County Agricultural Commissioners' yearly Crop 

Reports. These publications offer the most comprehensive annual data on agricultural production 

by county. The Agricultural Commissioners and their staff members compile fundamental data 

from various sources. The data sources differ from county to county, such as grower surveys, 

inspection, and regulatory data, shipment data, and industry evaluations. The statistics are coded 

at a detailed level, varying by county.  

 
2 chronic lowering of groundwater levels, reduction of groundwater storage, seawater intrusion, land subsidence, 

water quality degradation, and depletions of interconnected surface water. 
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We use county-level data on total harvested acres from annual crop reports between 1980 

and 2020 to estimate the total harvested acres for given crops in each county. In total, the data 

covers 442 types of crops harvested across the state of California. We aggregate these into 20 

crop categories per the DWR classifications. We further aggregate these 20 crop categories into 

four different categories, namely field crops, forage, vegetables & melons, and fruit, trees & 

nuts. Since various county offices report these data, we have noticed inconsistencies in the data 

on numerous occasions. In such cases, we have dropped 104 observations which are 0.5 percent 

of the total observations, as part of the data-cleaning exercise. Figure 1 represents the total 

number of harvested acres, measured in a million acres, within four crop categories in California 

from 1980 to 2020. The overall trend of harvested acres has been declining over time. However, 

harvested acres for fruits, trees, and nuts have shown an increase over the same period. The 

harvested acres for vegetables and melons have remained relatively steady, while there has been 

a decline in harvested acres for field crops and forage crops.  

 

Figure 1. Harvested Acres (in millions) by Crop Categories, 1980 – 2020 
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5.2. Statewide Irrigation Method Survey (CDWR) 

Since 1991, the California Department of Water Resources (CDWR) has performed a survey, 

typically every ten years, to update California's statistics on crops and irrigation technologies. 

California producers receive a one-page irrigation survey form in the mail to update records on 

the types of irrigation systems utilized in the state. Growers were randomly chosen from a list of 

around 58,000 growers taken from the California Department of Food and Agriculture (CDFA) 

mail questionnaires as part of the surveys. The list did not include farmers who grew rice, non-

irrigated crops, or livestock only. During 2001, 2010, and 2016 surveys, growers were also asked 

to name the primary county in which they farmed, the acreages they had planted to each of the 

20 crop categories, and the related irrigation technology within that county. The number of 

questionnaires mailed to each county was proportional to the ratio of growers residing in each 

county to the statewide total. 

Surface (i.e., gravity-driven), sprinkler, and low-volume (i.e., drip and micro-sprinkler) 

irrigation are the primary methods used by growers to irrigate crops within California. There is 

also a small, irrigated area with subsurface irrigation, in which drain tiles or open channels are 

blocked to force water into the root zone of crops. However, this area is insignificant relative to 

the other methods. We have aggregated low-volume and subsurface irrigation into one category.  

Figure 2 depicts the trend in the proportion of irrigated land according to the irrigation 

system category in California. The proportion of micro, drip, and subsurface irrigation 

technology has significantly increased from 15.8 percent in 1991 to 56.3 percent in 2016. In 

contrast, the proportion of surface irrigation has experienced a decline from 66.9 percent in 1991 

to 30.1 percent in 2016. However, the rate of adoption of sprinkler irrigation has remained 

relatively constant, with only a slight decrease from 17.3 percent in 1991 to 13.6 percent in 2016. 

Taken together, these trends suggest that there has been an overall rise in the utilization of 

efficient irrigation technologies over time, with micro, drip, and subsurface irrigation becoming 

the predominant technology after 2010.  
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Figure 2. Trends in Irrigated area (%) by Irrigation System Category in California 
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Figure 3. Trends in Irrigated area (%) by Crop Categories and Irrigation System Category in 

California 
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Table 1: Summary Statistics 

  
Number of 

observations 
Mean Std. Dev. Min Max 

Harvested Acreage      

All crops 19,707 9,216,123.2 562,436.0 8,163,926 10,756,627 

Field Crops 7,180 3,520,609.6 874,310.4 2,076,759 5,756,756 

Forage 3,541 1,964,444 298,129.7 1,306,735 2,311,920 

Vegetables & Melons 4,351 1,228,455 115,694.2 923,809 1,429,167 

Fruits, Trees & Nuts 4,635 2,502,614.7 584,683.7 1,777,373 3,878,906 

            

Irrigation Technology (in percent)   

All crops 

   Surface 7,030 44.1 42.3 0 100 

   Sprinkler, Micro & Drip 7,030 55.9 42.3 0 100 

Field Crops 

   Surface 1,899 66.8 40.1 0 100 

   Sprinkler, Micro & Drip 1,899 33.2 40.1 0 100 

Forage 

   Surface 1,399 67.5 37.3 0 100 

   Sprinkler, Micro & Drip 1,399 32.5 37.3 0 100 

Vegetables & Melons 

   Surface 1,509 37.2 42.3 0 100 

   Sprinkler, Micro & Drip 1,509 62.8 42.3 0 100 

Fruits, Trees & Nuts 

   Surface 2,233 14.8 22.8 0 100 

   Sprinkler, Micro & Drip 2,233 85.2 22.8 0 100 

 

Additional Weeks of Drought (count) 

  No Drought 9,395 35.4 18.6 0 53 

  Severe Drought 9,395 20.1 18.4 0 53 

  Extreme Drought 9,395 7.8 16.1 0 53 

Drought Intensity Index 9,395 54.2 71.3 .0009 461 

5.4. Constructing Drought Measures 

We use three different methods to construct a drought variable, which is a crucial explanatory 

factor in our analysis. First, we generate an indicator drought variable, where the variable takes a 

value of 1 in drought years and 0 in non-drought years. However, there are caveats to this 
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measure, such as potential biases and limitations in accurately identifying and defining drought 

events (Heim, 2002).  

To address these issues, we then constructed two different drought measures using the 

U.S. Drought Monitor (USDM) data. The USDM is a map generated collaboratively by the 

United States Department of Agriculture (USDA), the National Oceanic and Atmospheric 

Administration (NOAA), and the National Drought Mitigation Center (NDMC), which provides 

weekly information about drought conditions across the country. The map identifies general 

drought areas in five different levels of intensity ranging from D0 to D4 (explained below). Each 

intensity level is linked with a probability of occurrence expressed as a percentile, derived from 

the 1932-2001 record of drought indicators. When an area doesn't fall into any of the drought 

categories, it is classified as "None" or having no drought. The USDM uses a five-category 

system, labeled Abnormally Dry (D0) (a precursor to drought, not actually drought), and 

Moderate (D1), Severe (D2), Extreme (D3), and Exceptional (D4). The USDM is not a strict 

drought index but is a composition of climate indices, numerical models, and expert input. The 

USDM uses six key physical indicators, including a drought index, percentiles from a soil 

moisture model, daily streamflow percentiles, the percent of normal precipitation, a standardized 

precipitation index, and a remotely sensed vegetation health index. This dataset gets updated 

every week to show the country's location and intensity of drought3.  

5.4.1 Drought as an indicator variable 

One way to assess the occurrence of drought events over time is by constructing drought 

indicator variables that assign a value of one to drought years and a value of zero otherwise. 

During our analysis period, the drought-affected years are 1987-92, 2000-01, 2007-09, 2012-16 

and 2020. 

 
3 Note that there are other methods to measure drought. For example, the Palmer Drought Severity Index 

(PDSI), which utilizes accessible temperature and precipitation data to estimate relative dryness. PDSI is 

a standardized index that usually ranges from -10 (dry) to +10 (wet), and it has county-level data 

available since 1885. Another example is using the California Irrigation Management Information System 

(CIMIS) data to measure drought. CIMIS data enables the calculation of the deficit of evapotranspiration 

(ET), a measure of drought or water scarcity. However, for the sake of expediency, we concentrate on the 

other two methods described above to establish our drought variable. 
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USDM data offers a more comprehensive and nuanced measure of drought conditions in 

comparison to a drought indicator variable. Furthermore, it has a much finer spatial resolution, 

providing county-level data, which facilitates a more detailed analysis of drought variation 

across diverse regions, accounting for microclimates and fluctuation of weather patterns. In 

addition, the weekly update feature of USDM data enables the construction of a continuous 

measure of drought severity, which captures the dynamic nature of drought conditions over time. 

The data amalgamate various indicators, including precipitation, soil moisture, streamflow, and 

vegetation health, resulting in a more comprehensive measure of drought conditions. In contrast, 

a drought year indicator variable solely indicates the occurrence of a drought in a specific year 

without providing any information regarding the severity, duration, or spatial extent of the 

drought. Researchers, policymakers, and stakeholders widely employ USDM data to monitor 

drought conditions in the United States (Kuwayama et al, 2018). Utilizing this data ensures 

consistency and comparability across different studies and analyses, and results are based on a 

standardized and widely accepted measure of drought severity. 

5.4.2 Construction of the Drought Intensity Index (USDM) 

The categorizations of drought intensity in the weekly USDM updates do not necessarily align 

with county boundaries. Therefore, to ensure accurate drought assessment, annual county-level 

measures were developed that reflect drought occurrence within agricultural areas in a county. 

To achieve this, we National Land Cover Database (NLCD) 2019 data and a geographic 

information system (GIS) to identify agricultural and non-agricultural areas by county. By 

excluding non-agricultural parcels from the analysis for all California counties, we match weekly 

USDM data with the NLCD agricultural parcels for each county, creating data that measures the 

impact of drought solely on agricultural areas. As a result, we construct USDM data for each 

week and the percentage of county agricultural areas experiencing drought, defined as per 

USDM drought category. This methodology allows us to assess the impact of drought on 

agricultural outcomes, at the county level, with higher accuracy. We take the summation of 

values corresponding to every level of drought between October of the preceding year and 

September of the ongoing year. This time frame is typically considered a general window during 

which drought adversely affects crops. Further details about the drought variables are discussed 

in Table 2.  
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Table 2: USDM Drought Severity Levels 

Category Drought Intensity Level % of Normal Conditions 

None Normal or wet conditions 31 or above 

D0 Abnormally dry 21 to ≤ 30 

D1 Drought, moderate 11 to ≤ 20.99 

D2 Drought, severe 6 to ≤ 10.99 

D3 Drought, extreme 3 to ≤ 5.99 

D4 Drought, exceptional 0 to ≤ 2.99 

 

The drought intensity index is created using the U.S. Drought Monitor data, which 

provides information on drought levels ranging from D0 (abnormally dry) to D4 (exceptional 

drought) for each county in the U.S. When an area doesn't fall into any of the drought categories, 

it is classified as "None" or having no drought. The drought intensity index measures the severity 

or strength of a drought event in a particular area. It considers the extent of coverage of drought 

conditions and the intensity of those conditions. This formula calculates the weighted average of 

the values for each drought level based on the proportion of the county area experiencing each 

drought level per week. By doing so, the formula considers the extent and intensity of drought 

conditions in a particular area and assigns a single value that represents the overall severity of 

drought conditions in that area for that particular week. We created an annual county-level 

drought intensity index by taking yearly averages. The weights assigned to each drought level 

reflect the relative ranking of the severity of each level, with a higher rank assigned to more 

severe levels of drought. This means counties with larger areas experiencing more severe 

drought conditions have a higher drought intensity score. The weights assigned to each drought 

level (I1, I2, I3, I4, I5, and I6) give higher importance to more severe drought levels. For example, 

I5, and I6 have higher values than I1, I2, I3, and I4. In that case, it means that the drought intensity 

variable is more sensitive to severe drought conditions (D3 and D4) than to moderate, mild or no 

drought conditions (None, D0, D1, and D2). The drought intensity index takes a single value for 

each county and each year. Overall, the drought intensity variable provides a valuable metric for 

assessing the severity of drought conditions in different areas and can be used to compare 

drought conditions over time and across regions. 
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𝐷𝑟𝑜𝑢𝑔ℎ𝑡 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥

=
𝐶𝑜𝑢𝑛𝑡𝑦 𝐷𝑟𝑜𝑢𝑔ℎ𝑡 𝐴𝑟𝑒𝑎 (𝑁𝑜𝑛𝑒)

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑢𝑛𝑡𝑦 𝐴𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑎𝑙 𝐴𝑟𝑒𝑎
∗ 𝐼1 +  

𝐶𝑜𝑢𝑛𝑡𝑦 𝐷𝑟𝑜𝑢𝑔ℎ𝑡 𝐴𝑟𝑒𝑎 (𝐷0 𝐿𝑒𝑣𝑒𝑙)

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑢𝑛𝑡𝑦 𝐴𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑎𝑙 𝐴𝑟𝑒𝑎

∗ 𝐼2 +  
𝐶𝑜𝑢𝑛𝑡𝑦 𝐷𝑟𝑜𝑢𝑔ℎ𝑡 𝐴𝑟𝑒𝑎(𝐷1 𝐿𝑒𝑣𝑒𝑙)

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑢𝑛𝑡𝑦 𝐴𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑎𝑙 𝐴𝑟𝑒𝑎
∗ 𝐼3

+
𝐶𝑜𝑢𝑛𝑡𝑦 𝐷𝑟𝑜𝑢𝑔ℎ𝑡 𝐴𝑟𝑒𝑎(𝐷2 𝐿𝑒𝑣𝑒𝑙)

𝑇𝑜𝑡𝑎𝑙  𝐶𝑜𝑢𝑛𝑡𝑦 𝐴𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑎𝑙 𝐴𝑟𝑒𝑎
∗ 𝐼4 +  

𝐶𝑜𝑢𝑛𝑡𝑦 𝐷𝑟𝑜𝑢𝑔ℎ𝑡 𝐴𝑟𝑒𝑎 (𝐷3 𝐿𝑒𝑣𝑒𝑙)

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑢𝑛𝑡𝑦 𝐴𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑎𝑙 𝐴𝑟𝑒𝑎

∗ 𝐼5 +  
𝐶𝑜𝑢𝑛𝑡𝑦 𝐷𝑟𝑜𝑢𝑔ℎ𝑡 𝐴𝑟𝑒𝑎(𝐷4 𝐿𝑒𝑣𝑒𝑙)

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑢𝑛𝑡𝑦 𝐴𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑎𝑙 𝐴𝑟𝑒𝑎
∗ 𝐼6 

where I1 = 1, I2 = 2, I3 = 3, I4 = 4, I5 = 5, and I6 = 6 

5.4.3 Impact of Additional Weeks of Drought (USDM) 

The drought variable is defined as the number of weeks a county experiences a given severity 

level of drought, weighted by the percentage of the county's agricultural area. To investigate the 

impact of drought on agriculture, we condensed all six drought intensity levels into three 

categories, where the first category consists of None and D0. The second category consists of 

D1, and D2. And the third category consists of D3 and D4. There are three variables based on 

this new categorization of USDM drought intensity levels: 

 

𝐷0: 𝑁𝑜 𝐷𝑟𝑜𝑢𝑔ℎ𝑡 & 𝐴𝑏𝑛𝑜𝑟𝑚𝑎𝑙𝑙𝑦 𝐷𝑟𝑦  

𝐷1: 𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 & 𝑆𝑒𝑣𝑒𝑟𝑒 𝐷𝑟𝑜𝑢𝑔ℎ𝑡 

𝐷2: 𝐸𝑥𝑡𝑟𝑒𝑚𝑒 & 𝐸𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑎𝑙 𝐷𝑟𝑜𝑢𝑔ℎ𝑡 

The coefficient associated with this variable can be used to assess the effect of an additional 

week of drought covering all of the agricultural areas in the county when used as an explanatory 

variable in a regression.  

𝐷𝑋𝑖𝑡 =  ∑ agricultural area in county 𝑖 experiences drought of intensity level 𝑋 in time 𝑡   

(6) 

 

 𝑋 ∈ {0, 1, 2}  

 



 19 

where 𝐷𝑋𝑖𝑡 represents a vector consisting of three variables These variables indicate the area-

weighted number of weeks in year 𝑡, where the agricultural areas of county 𝑖 were classified as 

experiencing each of the three levels of drought intensity.  

6. Estimation Strategy 
The goal of this analysis is to estimate the effect of drought and SGMA, in our study, on the rate 

of adoption of efficient irrigation technologies and the changes in cropping choice. To obtain 

reliable estimates, we employ the county fixed-effects model. Incorporating fixed effects at the 

county level facilitates the control of unobservable time-invariant factors that might 

systematically impact the variables of interest. Additionally, the county fixed-effect model 

captures the within-county variations over time. The utilization of this model increases the 

robustness of the findings and provides reliable and meaningful results. 

6.1 Main Specification: Impact of Additional Weeks of Drought  

 

These estimation strategies are adapted from Kuwayama et al, 2018. The dependent variable is 

the share of adoption of irrigation technology for county c in year t:  

 

𝐼𝑇𝑐𝑡 = 𝛼 + 𝐷𝑋𝑐𝑡
′ ∗   + 𝛽 ∗ 𝑆𝐺𝑀𝐴𝑐𝑡 +  

𝑖
 + 𝜖𝑐𝑡          (7)  

 

where surface irrigation is the reference category and 𝜀𝑐𝑡 is an idiosyncratic error term. The 

vector   corresponds to the coefficients of interest for drought, and the 𝛽 corresponds to the 

coefficients of interest for SGMA. County fixed effects (i) help obtain unbiased estimates in the 

presence of unobserved time-invariant characteristics of counties that affect their agricultural 

outcomes in the face of drought. We will estimate equation 7 for all crops and for different crop 

categories, namely field crops, forage, vegetables and melons, fruits, trees, and nuts separately. 

The irrigation technology data that is currently obtainable is not gathered on an annual basis, as 

the survey examining it is only conducted periodically. This lack of regular data collection may, 

in turn, create certain constraints that could limit its usefulness in certain contexts. 

 

In another specification, the dependent variable is log of harvested acres for county 𝑐 in year 𝑡: 
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𝑙𝑜𝑔(𝐻𝐴)𝑐𝑡 = 𝛼 + 𝐷𝑋𝑐(𝑡−𝑘)
′ ∗   +  𝛽 ∗   𝑆𝐺𝑀𝐴𝑐𝑡  + 

𝑖
 + 𝜖𝑐𝑡           (8) 

 

where k takes the value from 0 to 3 for field crops; forage; vegetables and melons, and it takes 

the value from 0 to 5 for fruits, tree, and nuts. 𝜀𝑐𝑡 is an idiosyncratic error term. The vector   

corresponds to the coefficients of interest for drought, and 𝛽 is the coefficient of interest for 

SGMA. We will estimate equation 8 for all crops and for different crop categories, namely field 

crops, forage, vegetables and melons, fruits, tree, and nuts separately. 

 

We incorporate two additional drought measures into our analysis, namely the drought 

intensity index (DI) and the drought indicator (𝐷𝑡). These measures will serve as the variables of 

interest in equation 7 to assess the influence of drought on the adoption rate of irrigation 

technologies and in equation 8 to evaluate the impact of drought on the logarithm of harvested 

acres. The inclusion of these measures enables us to take into account both the severity and 

duration of drought conditions, thereby providing us with a holistic understanding of their effects 

on both irrigation technology adoption and harvested acreage. By incorporating these measures 

into our analysis, we aim to enhance the accuracy and robustness of our findings. 

 

In Table 3, we list the relevant variables and their expected sign on harvested acres of 

each crop category and adoption of irrigation technology. We also describe each variable and 

how it is measured in this study. 
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Table 3: Description of Variables and Expected Signs  

Name of Variable Acronym Description Units Type of Variable Expected Sign 

Dependent Variable      

Harvested Acres HA Acreage harvested per year Acres Continuous  

Irrigation Technology IT 
Share of efficient irrigation methods 

used for irrigation 
Percent Continuous  

Surface irrigation 

(reference category) 
 Share of surface irrigation used for 

irrigation 
Percent Continuous  

Sprinkler, micro, drip and 

Subsurface 
 Share of sprinkler, drip, micro and 

subsurface used for irrigation 
Percent Continuous  

Independent Variable 

Additional Week of 

Drought 
DXit 

number of weeks in a year a county 

experiences a given severity level of 

drought 

  - for HA and + for IT 

Moderate or Severe 

drought 
Severe 

This includes moderate (D1) and 

severe (D2) drought category of 

USDM 

count Discrete - for HA and + for IT 

Moderate or Severe 

drought one-year lag 
Severe lag1 

Additional weeks in drought in 

previous year 
  - for HA and + for IT 

Moderate or Severe 

drought two-year lag 
Severe lag2 

Additional weeks in drought 2 years 

ago 
  - for HA and + for IT 

Moderate or Severe 

drought three-year lag 
Severe lag3 

Additional weeks in drought 3 years 

ago 
  - for HA and + for IT 

Extreme or Exceptional 

drought 
Extreme 

This includes extreme (D3) and 

exceptional (D4) drought category of 

USDM 

count Discrete - for HA and + for IT 

Extreme or Exceptional 

drought one-year lag 
Extreme lag1    - for HA and + for IT 

Extreme or Exceptional 

drought two-year lag 
Extreme lag2    - for HA and + for IT 

Extreme or Exceptional 

drought three-year lag 
Extreme lag3    - for HA and + for IT 
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Sustainable Groundwater 

Management Act 
SGMA 

The county that has implemented 

SGMA after the year 2014 gets a 

value of 1 and all other counties 

without SGMA after 2014 get a value 

of 0 and all counties prior to 2014 get 

a value of 0. 

 Discrete - for HA and + for IT 

Drought Intensity Index DI 

It is an index to measure the severity 

of drought in a county in a year. For 

detail refer data section 

 Continuous - for HA and + for IT 

Drought Intensity Index 

one-year lag 
DI lag1    - for HA and + for IT 

Drought Intensity Index 

two-year lag 
DI lag2    - for HA and + for IT 

Drought Intensity Index 

three-year lag 
DI lag3    - for HA and + for IT 

Drought Indicator 

Variable 
drought 

The variable takes the value 1 for the 

drought year in California such as 

1987-92, 2001-02, 2007-09, 2012-16 

and takes the value 0 for remaining 

years. 

 Discrete - for HA and + for IT 

Drought Indicator 

Variable one-year lag 
drought lag 1    - for HA and + for IT 

Drought Indicator 

Variable two-year lag 
drought lag2    - for HA and + for IT 

Drought Indicator 

Variable three-year lag 
drought lag3    - for HA and + for IT 
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7. Results 

7.1. Irrigation Technology 

Table 4 (Model 1) presents the results of our analysis using equation (7), wherein the dependent 

variable is the share of efficient irrigation technologies, with surface irrigation as the reference 

category. The coefficients in the table indicate the positive relationship between additional weeks 

of drought and the adoption rate of efficient irrigation technologies for varying drought severity 

levels. The coefficient estimates for all crops category in column 1 suggest that moderate or 

severe drought has a more pronounced significant effect on the adoption of efficient irrigation 

technologies. In other words, the adoption of sprinkler, drip or subsurface irrigation is higher 

during moderate or severe drought relative to extreme or exceptional drought. 

The specification in column 2 includes county-fixed effects, which reveals a modest but 

positive and significant effect of moderate or severe drought (at a 10% significance level) on the 

adoption of efficient irrigation technologies, indicating that farmers are somewhat responsive to 

these drought conditions. The county fixed-effects control for within-county variations over 

time. The finding suggests that as drought becomes intense, there is a slight increase in the 

adoption rate of these technologies across all crops. Furthermore, the estimated coefficients are 

positive and statistically significant at 1% as drought conditions become more extreme or 

exceptional. This indicates a positive association between drought severity and the adoption rate 

of efficient irrigation technologies. Hence, farmers are more likely to invest in technologies such 

as sprinklers, micro, and drip irrigation as the severity of drought rises. The positive relationship 

reflects farmers' need to cope with water scarcity and maintain or improve crop productivity.  

 

The magnitude of this positive impact is 0.05 and 0.11 percentage point surge in the 

adoption rate of efficient irrigation technologies compared to surface irrigation for every 

additional week of moderate or severe and extreme or exceptional drought, respectively. In other 

words, for every week of extreme or exceptional drought, there is a 0.11 percentage point 

increase in the likelihood that farmers adopt efficient irrigation technologies over surface 

irrigation. Overall, these findings demonstrate that farmers are responsive to drought conditions 

when making decisions regarding irrigation technology adoption as the adoption rate of efficient 
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irrigation technologies rises with increasing drought severity. It reflects their recognition of the 

need to adapt to water scarcity and maximize water-use efficiency. 

In columns 3, 4, 5, and 6 of Table 4, we present the findings for four crop categories: 

field crops, forage, vegetables and melons, and fruits, trees, and nuts. For field crops, vegetables 

and melons, and fruits, trees, and nuts, the results indicate a positive and statistically significant 

association between the rate of adoption of irrigation technology and additional weeks of 

extreme or exceptional drought. This means that as the severity of drought worsens, the 

likelihood of farmers adopting efficient irrigation technologies increases for these crop 

categories. Specifically, for each additional week of extreme or exceptional drought, the 

adoption rate of sprinkler, drip, and subsurface irrigation increases by 0.13 percentage points for 

field crops, 0.12 percentage points for vegetables and melons, and 0.08 percentage points for 

fruits, trees, and nuts as compared to surface irrigation. However, the findings for forage crops 

differ. Extreme or exceptional drought has a negative impact on the adoption of irrigation 

technologies for forage crops, although the coefficient estimate is statistically insignificant. The 

reasons for this could be related to the economic value or water-use efficiency associated with 

these particular crop categories. 

Overall, the positive coefficients indicate that the rate of adoption of irrigation 

technologies increases with additional weeks of extreme or exceptional drought for field crops, 

vegetables and melons, and fruits, trees, and nuts. However, for forage crops, extreme drought 

has a negative impact, although not statistically significant. The specific dynamics of each crop 

category and the varying factors influencing farmers' decisions contribute to these findings. 

In Table 4 (Model 2), the outcomes are presented wherein the dependent variable is the 

share of efficient irrigation technologies, with surface irrigation as the reference category. The 

variable of interest is SGMA while controlling for the additional weeks of drought. This enables 

the isolation of SGMA's specific impact on irrigation technology adoption while taking into 

account the influence of drought conditions. Such control measures allow us to distinguish the 

effect of SGMA from the impact of drought on farmers' irrigation choices. 

The results indicate that there is an upsurge in the adoption rate of efficient irrigation 

technology after SGMA's implementation for all crops. Counties with SGMA program 

implementation are, on average, 11.21 percentage points more likely to adopt sprinklers, drip or 

subsurface drip than counties without SGMA implementation (column 8). For field crops, 
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vegetables and melons, and trees, fruits, and nuts, there is a positive and statistically significant 

effect, with corresponding coefficient estimates being 10.6 percent, 21.14 percent, and 2.8 

percent, respectively. For forage crops, on the contrary, there is a positive but insignificant effect 

on the adoption of irrigation technologies.  

A positive coefficient for SGMA indicates that its implementation is associated with a 

higher share of sprinklers, drip, or subsurface irrigation compared to surface irrigation. This 

suggests that the adoption of SGMA regulations and practices encourages farmers to invest in 

more efficient irrigation technologies, which can potentially lead to improved water management 

and conservation. 
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Table 4: Impact of Expectation of SGMA and Additional Weeks of Drought on Percent of Adoption of Efficient Irrigation 

Technologies  

  Model 1 Model 2 

  All crops 
All 

Crops 

Field 

Crops 
Forage 

Vegetables 

& Melons 

Fruits 

Trees & 

Nuts 

All crops 
All 

Crops 

Field 

Crops 
Forage 

Vegetables 

& Melons 

Fruits 

Trees & 

Nuts 

SGMA       11.66*** 11.21*** 10.60*** 2.741 21.14*** 2.807** 

       (1.148) (1.099) (1.412) (1.831) (2.254) (1.327) 

Severe 0.104*** 0.050* 0.049 0.011 0.101* 0.002 0.116*** 0.047* 0.045 0.010 0.059 0.001 

 (0.0266) (0.0267) (0.0350) (0.0411) (0.0585) (0.0333) (0.0265) (0.0266) (0.0347) (0.0411) (0.0536) (0.0332) 

Extreme 0.083*** 0.109*** 0.126*** -0.043 0.125* 0.079** -0.068** -0.049 -0.025 -0.079 -0.147** 0.040 

 (0.0308) (0.0285) (0.0374) (0.0443) (0.0678) (0.0347) (0.0341) (0.0323) (0.0421) (0.0504) (0.0669) (0.0394) 

County FE No Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes 

Sample size 8610 8610 2718 1604 1968 2320 8610 8610 2718 1604 1968 2320 

Adjusted R2 0.00287 0.186 0.388 0.458 0.00273 0.325 0.0146 0.196 0.400 0.459 0.305 0.326 

***Indicate statistical significance at the 1% levels.         

**Indicate statistical significance at the 5% levels.         

*Indicate statistical significance at the 10% levels.         
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7.2. Harvested Acres 

 

Table 5 (Model 1) illustrates the results of estimating equation (8), which incorporates drought 

lags into the estimation equation and uses the logarithm of harvested acres as the dependent 

variable. The coefficients presented in the table provide the association between the harvested 

acres and drought levels, including moderate or severe and extreme or exceptional droughts, in 

the same year and various lag periods. 

The results demonstrate the impact of additional weeks of drought on the harvested acres 

of different crop categories. Specifically, for forage crops, a significant negative effect of 

additional weeks of moderate or severe and extreme or exceptional drought at three-year lags is 

observed, resulting in a reduction in harvested acres. The magnitude of this adverse impact is 0.3 

percent for moderate or severe drought levels and 0.4 percent for extreme or exceptional drought 

levels for an additional week of drought. Thus, prolonged periods of drought have a deleterious 

effect on forage crop production, leading to a decline in the harvested acres. 

Table 5 (Model 2) presents the results of our analysis, which focuses on the relationship 

between the implementation of the SGMA and the log of harvested acres while accounting for 

additional weeks of drought. We find a significant negative effect of SGMA on harvested acres 

for forage crops. Specifically, we observe a substantial decline of 27.69 percent in harvested 

acres for counties with SGMA program implementation than counties without SGMA (column 

10). The observed negative coefficient indicates that the incorporation of SGMA regulations and 

practices has resulted in an unfavorable impact on the extent of agricultural land used for the 

production of forage crops. This decrease in harvested acres can be attributed to the measures 

enacted under SGMA, such as the necessity to acquire additional water supplies and a reduction 

in groundwater pumping. When faced with water shortages, farmers frequently resort to idling or 

fallowing land, which involves leaving certain irrigated croplands unplanted. This adaptive 

strategy serves to mitigate revenue losses during periods of water scarcity. Typically, farmers 

prioritize idling less profitable crops as a means to minimize financial impacts (PPIC, 2021). 
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Table 5: Impact of Expectation of SGMA and Additional Weeks of Drought on Log Harvested Acres 

  Model 1 Model 2 

  Field Crops Forage 
Vegetables 

& Melons 

Fruits Trees 

& Nuts 

Field 

Crops 
Forage 

Vegetables 

& Melons 

Fruits Trees & 

Nuts 

SGMA     -0.0814 -0.284*** 0.153 -0.0548 
     (0.0817) (0.0731) (0.115) (0.122) 

Severe 0.0003 -0.0006 -0.0003 -0.0010 0.0004 0.0001 -0.0007 -0.0010 
 (0.00181) (0.00147) (0.00244) (0.00224) (0.00182) (0.00147) (0.00246) (0.00224) 

Extreme -0.0008 -0.0027 -0.0013 -0.0014 0.0005 0.0015 -0.0038 -0.0006 
 (0.00241) (0.00194) (0.00329) (0.00320) (0.00275) (0.00221) (0.00379) (0.00366) 

Severe lag1 0.0018 -0.0014 -0.0016 -0.0016 0.0017 -0.0014 -0.0015 -0.0016 
 (0.00198) (0.00160) (0.00267) (0.00234) (0.00198) (0.00159) (0.00267) (0.00235) 

Extreme lag1 -0.0008 0.0006 0.0009 -0.0012 -0.0007 0.0008 0.0008 -0.0011 
 (0.00321) (0.00256) (0.00442) (0.00393) (0.00321) (0.00255) (0.00442) (0.00394) 

Severe lag2 0.0002 0.0001 0.0009 -0.0004 0.0003 0.0006 0.0007 -0.0002 
 (0.00203) (0.00164) (0.00279) (0.00246) (0.00204) (0.00164) (0.00279) (0.00250) 

Extreme lag2 0.0018 -0.0001 0.001 0.0014 0.0019 0.0001 0.0008 0.0018 
 (0.00317) (0.00254) (0.00430) (0.00381) (0.00317) (0.00253) (0.00430) (0.00391) 

Severe lag3 0.0014 -0.003** -0.0017 -0.0012 0.0014 -0.0029** -0.0017 -0.0012 
 (0.00182) (0.00147) (0.00248) (0.00248) (0.00182) (0.00146) (0.00248) (0.00248) 

Extreme lag3 -0.0011 -0.004** -0.0003 -0.0007 0.0002 0.0002 -0.0028 -0.0004 
 (0.00242) (0.00196) (0.00329) (0.00406) (0.00273) (0.00223) (0.00376) (0.00412) 

Severe  lag4    -0.0011    -0.0011 
    (0.00248)    (0.00248) 

Extreme  lag4    -0.0011    -0.0009 
    (0.00412)    (0.00416) 

Severe  lag5    -0.0002    -0.0001 
    (0.00252)    (0.00255) 

Extreme  lag5    0.0008    0.0014 
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    (0.00340)    (0.00369) 

County FE Yes Yes Yes Yes Yes Yes Yes Yes 

Sample size 2522 1406 1675 1788 2522 1406 1675 1788 

Adjusted R2 0.463 0.779 0.380 0.618 0.463 0.781 0.380 0.617 

***Indicate statistical significance at the 1% levels.     
**Indicate statistical significance at the 5% levels.     
*Indicate statistical significance at the 10% levels.     
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7.3. Robustness Check 

As a means of conducting a robustness check, we employ two distinct methods to define drought 

variables in addition to our preferred specification. These methods consist of a drought intensity 

index and a drought indicator variable. Specifically, the results are reported in Table A1. In this 

instance, the dependent variable is the rate of adoption of irrigation technologies, the 

independent variable is the drought intensity index, and the reference category is surface 

irrigation. Notably, the estimated coefficient is positive and statistically significant, suggesting 

that an increase in the drought intensity index is associated with a corresponding increase in the 

rate of adoption of sprinklers, drip or subsurface drip in comparison to surface irrigation for all 

crops. Furthermore, Table A3 reports the results, where the dependent variable is the rate of 

adoption of irrigation technologies, and the independent variable is the drought indicator. Here, 

the coefficient estimate is negative but statistically insignificant. 

Table A2 presents findings where the log harvested acres as the dependent variable, and 

drought intensity index as the independent variable. The obtained negative coefficient estimate is 

statistically insignificant, regardless of the presence or absence of lag. Furthermore, Table A4 

portrays the outcomes where the log harvested acres as the dependent variable and drought 

indicator as the independent variable. The negative coefficient estimate is statistically 

insignificant without lag. The same is true for the negative estimated coefficient with lag.  

 

8. Conclusion and Policy Implications 

This paper has examined how farmers respond to drought and institutional interventions in terms 

of the adoption of different irrigation technologies and changes to cropping patterns, over time 

and across California counties. The article uses three different methods to measure the drought 

namely (i) the impact of additional week of drought; (ii) the drought intensity index; and (iii) the 

drought indicator variable. To analyze this question, the article employs a fixed effect regression 

model to analyze data gathered from 58 California counties in the past two decades.   

The findings of this article demonstrate the significant impact of drought on the adoption 

of efficient irrigation technologies. Specifically, each additional week of extreme or exceptional 

drought has a positive and statistically significant effect on the adoption of efficient irrigation 

technologies across all crops. In contrast, prolonged drought periods at moderate or severe 

drought shows a small but positive effects influence on the adoption of efficient irrigation 
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technologies for all crops. The phenomenon observes that farmers are possibly more inclined to 

invest in efficient irrigation technologies during extreme or exceptional drought situations, but 

not during moderate or severe drought conditions which raises a fascinating question regarding 

their decision-making processes. Therefore, it is imperative to consider the underlying factors 

that influence farmers' investment decisions during different drought scenarios. 

One plausible explanation for this phenomenon is the perception of risk and urgency. 

Farmers may perceive a higher level of risk and urgency during extreme or exceptional droughts 

to adopt efficient irrigation technologies to mitigate the immediate impacts of water scarcity and 

maintain crop productivity. In contrast, during moderate or severe droughts, farmers might 

perceive a lower level of risk, or facing a sense of resilience based on their past experiences or 

the availability of alternative coping mechanisms, such as groundwater extraction or changing 

cropping patterns. Other possible explanations could be that efficient irrigation technology is 

expensive to install and maintain. Farmers may be hesitant to invest in this technology during 

moderate or severe droughts for certain crops. However, during extreme or exceptional droughts, 

the opportunity cost of not investing in efficient irrigation technology may be too high, as 

farmers may have no other way to water their crops with dwindling amounts of water. 

Additionally, the results indicate noteworthy negative and statistically significant effects 

of drought on harvested acres of forage crops. This negative impact is observed for each 

additional week of both moderate or severe and extreme or exceptional drought conditions. The 

reduction in harvested acres of forage crops due to drought can be attributed to multiple factors. 

Specifically, forage crops typically have greater watering needs relative to other crops, making 

them more vulnerable to water scarcity caused by drought conditions. This can lead to a decrease 

in planted area and harvested acres as farmers struggle to meet the water needs of forage crops. 

Additionally, farmers may prioritize their water usage for higher-value or essential food crops, 

resulting in a strategic shift away from forage crops. This shift can lead to a reduction in the 

cultivation of forage crops in favor of other crops that offer better economic returns or have 

higher water-use efficiency. Therefore, the negative impact of drought on forage crop production 

is a multifaceted issue that requires careful consideration of water management strategies and 

crop allocation decisions. 
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Moreover, the study reveals that the implementation of the SGMA has led to a notable 

increase in the adoption rate of irrigation technology, while controlling for additional weeks of 

drought. This means that areas that have implemented SGMA are more likely to introduce 

efficient irrigation technologies, such as sprinklers, drip, or subsurface drip, compared to surface 

(furrow) irrigation during drought conditions. This finding is consistent with the goals of SGMA, 

which aims to promote sustainable groundwater management practices and reduce reliance on 

unsustainable groundwater extraction. Overall, this finding suggests that SGMA has been 

successful in promoting sustainable groundwater management practices and encouraging the use 

of efficient irrigation technologies during drought conditions. Policymakers can consider this as 

an encouraging sign that institutional interventions, such as SGMA, can effectively incentivize 

the adoption of sustainable agricultural practices in response to water scarcity.  

Furthermore, the analysis uncovers a negative and statistically significant relationship 

between SGMA and harvested acres for forage crops, while controlling for additional weeks of 

drought. The implementation of SGMA has had a remarkable detrimental effect on the harvested 

acres of forage crops. Our analysis reveals that following the adoption of SGMA, there has been 

a substantial reduction in the extent of agricultural land utilized for forage crop production. 

The purpose of SGMA is to guarantee sustainable groundwater management, which has 

necessitated diverse measures such as enhancing water supplies and curtailing groundwater 

pumping. These actions have resulted in noteworthy shifts in land use patterns and agricultural 

practices. Farmers, who are confronted with water scarcities, have resorted to leaving land idle or 

fallow as a mechanism to tackle limited water availability. This method involves abstaining from 

planting certain irrigated croplands, specifically forage crops. By idling less profitable crops, 

farmers aim to mitigate revenue losses and optimize resource allocation.  The adverse impact of 

SGMA on the harvested acres of forage crops underscores the difficulties encountered while 

adapting to new water management regulations and practices. It emphasizes the necessity for 

farmers to revise their agricultural activities to align with sustainable groundwater management 

objectives. 

Our findings are robust to alternative drought measures, which yield comparable 

estimates, thereby reinforcing the reliability of our results. Overall, policymakers can leverage 

the insights from this article to inform their decision-making processes regarding the promotion 
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of efficient irrigation technologies, managing the impacts of drought on cropping patterns, and 

shaping effective institutional interventions to enhance water management in California's 

agricultural sector. 
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Appendix 
 

 

Table A1: Impact of Expectation of SGMA and Log Drought Intensity Index on Adoption of Irrigation Technologies  

  Model 1 Model 2 

  All crops 
All 

Crops 

Field 

Crops 
Forage 

Vegetables 

& Melons 

Fruits 

Trees & 

Nuts 

All crops 
All 

Crops 

Field 

Crops 
Forage 

Vegetables 

& Melons 

Fruits 

Trees & 

Nuts 

SGMA       12.05*** 10.11*** 10.96*** 1.398 17.78*** 2.587** 

       (1.132) (1.082) (1.450) (1.824) (2.120) (1.319) 

Log DI 1.751* 3.796*** 3.744*** -0.784 3.760* 2.290** -2.158** 0.0205 -0.103 -1.199 -1.679 1.259 

 (0.944) (0.872) (1.161) (1.385) (2.042) (1.050) (0.971) (0.914) (1.218) (1.487) (1.805) (1.125) 

County FE No Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes 

Sample size 7920 7920 2432 1524 1841 2123 8390 8390 2527 1524 2064 2275 

Adjusted R2 0.0003 0.187 0.393 0.451 0.001 0.330 0.013 0.192 0.399 0.451 0.291 0.413 

***Indicate statistical significance at the 1% levels.         

**Indicate statistical significance at the 5% levels.         

*Indicate statistical significance at the 10% levels.         
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Table A2: Impact of Expectation of SGMA and Log Drought Intensity Index on Log Harvested Acres 

  Model 1 Model 2 

  Field Crops Forage 
Vegetables 

& Melons 

Fruits Trees 

& Nuts 

Field 

Crops 
Forage 

Vegetables 

& Melons 

Fruits Trees & 

Nuts 

SGMA     -0.0685 -0.258*** 0.0987 -0.1800 
     (0.0781) (0.0675) (0.101) (0.116) 

Log DI -0.0529 -0.0617 -0.0791 -0.0415 -0.0297 0.0153 -0.0709 -0.0092 
 (0.0635) (0.0538) (0.105) (0.0843) (0.0688) (0.0572) (0.0895) (0.0868) 

Log DI lag1 0.0752 -0.0242 -0.0124 -0.0520 0.0780 -0.0104 -0.0169 -0.0176 
 (0.0780) (0.0657) (0.132) (0.0970) (0.0780) (0.0655) (0.102) (0.0994) 

Log DI lag2 -0.0279 0.00782 -0.0166 0.0050 -0.0134 0.0569 0.0232 0.0644 
 (0.0782) (0.0655) (0.132) (0.0944) (0.0800) (0.0665) (0.104) (0.102) 

Log DI lag3 0.0360 -0.136*** -0.0964 -0.0168 0.0561 -0.0676 -0.0648 -0.0040 
 (0.0627) (0.0528) (0.104) (0.0953) (0.0668) (0.0555) (0.0864) (0.0956) 

Log DI lag4    -0.0214    -0.0028 
    (0.0986)    (0.0992) 

Log DI lag5    0.0079    0.0818 
    (0.0865)    (0.0988) 

County FE Yes Yes Yes Yes Yes Yes Yes Yes 

Sample size 2254 1334 1568 1631 2254 1334 1568 1631 

Adjusted R2 0.465 0.766 -0.0008 0.616 0.465 0.769 0.408 0.616 

***Indicate statistical significance at the 1% levels.     
**Indicate statistical significance at the 5% levels.     
*Indicate statistical significance at the 10% levels.     
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Table A3: Impact of Expectation of SGMA and Drought Indicator on Adoption of Irrigation Technologies  

  Model 1 Model 2 

  All crops 
All 

Crops 

Field 

Crops 
Forage 

Vegetables 

& Melons 

Fruits 

Trees & 

Nuts 

All crops 
All 

Crops 

Field 

Crops 
Forage 

Vegetables 

& Melons 

Fruits 

Trees & 

Nuts 

SGMA       
6.70*** 6.74*** 6.54 -2.56 32.23*** 0.03 

       
(1.088) (0.924) (4.905) (4.162) (6.002) (2.671) 

drought -0.65 -0.74 -13.52*** 2.49 -12.20** -3.43 -0.120 -0.22 -7.45 0.25 17.15** -3.40 
 

(1.009) (0.830) (3.759) (4.244) (5.166) (2.538) (1.010) (0.830) (5.901) (5.592) (7.488) (3.477) 

County FE No Yes Yes Yes Yes Yes No Yes Yes Yes Yes Yes 

Sample size 7030 7030 1899 1399 1509 2123 7030 7030 1899 1399 1509 2123 

Adjusted R2 -0.00008 0.324 0.599 0.570 0.472 0.330 0.005 0.329 0.599 0.570 0.482 0.331 

***Indicate statistical significance at the 1% levels.         

**Indicate statistical significance at the 5% levels.         

*Indicate statistical significance at the 10% levels.         
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Table A4: Impact of Expectation of SGMA and Drought Indicator on Log Harvested Acres 

  Model 1 Model 2 

  Field Crops Forage 
Vegetables 

& Melons 

Fruits Trees 

& Nuts 

Field 

Crops 
Forage 

Vegetables 

& Melons 

Fruits Trees & 

Nuts 

SGMA     -0.0761 -0.255*** 0.0764 -0.0677 
     (0.0582) (0.0514) (0.0801) (0.0812) 

drought 0.0136 -0.0185 -0.0715 -0.0357 0.0172 -0.0080 -0.0745 -0.0371 
 (0.0609) (0.0513) (0.0826) (0.0803) (0.0609) (0.0509) (0.0826) (0.0803) 

drought lag1 0.0498 -0.0305 -0.0124 -0.0552 0.0567 -0.0089 -0.0202 -0.0423 
 (0.0709) (0.0596) (0.0958) (0.0905) (0.0711) (0.0593) (0.0960) (0.0918) 

drought lag2 -0.0038 0.0116 -0.0108 -0.0200 0.0057 0.0401 -0.0202 0.0035 
 (0.0675) (0.0566) (0.0911) (0.0863) (0.0678) (0.0564) (0.0916) (0.0910) 

drought lag3 0.0929 -0.0860* -0.0144 -0.0203 0.110* -0.0352 -0.0312 -0.0044 
 (0.0595) (0.0502) (0.0808) (0.0855) (0.0609) (0.0508) (0.0825) (0.0875) 

drought lag4    -0.0219    -0.0177 
    (0.0894)    (0.0896) 

drought lag5    -0.0244    0.0074 
    (0.0756)    (0.0848) 

County FE Yes Yes Yes Yes Yes Yes Yes Yes 

Sample size 2521 1406 1671 1787 2521 1406 1671 1787 

Adjusted R2 0.463 0.777 0.378 0.618 0.463 0.781 0.379 0.618 

***Indicate statistical significance at the 1% levels.     
**Indicate statistical significance at the 5% levels.     
*Indicate statistical significance at the 10% levels.     
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