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Abstract 

 

Rainfall-Index-Based Insurance (RIBI) is one type of crop insurance that is frequently used to 

mitigate the negative consequences of drought. This paper investigates the viability of a rainfall 

index insurance contract. We developed a single crop farm-level optimization model and solve it 

for various scenarios of rainfall distribution during the growing season. The model is tested by 

making use of daily rainfall data (1989-2020) from the Luvuvhu catchment of the Limpopo River 

Basin in South Africa. Using both grid rainfall data and weather station data allows us to estimate 

the value of a more precise rainfall data source. We looked at an RIBI that is based not only on 

the seasonal amount of precipitation but also on sub-seasonal precipitation distribution. Grid 

data was found to be more effective than station data at reducing basis risk. For maize farmers 

in this area, the most beneficial policy is one in which crops are insured according to growth 

stages and the index is generated using grid data. In comparison to the uninsured, the insured 

has a lower expected utility. When compared to weather station data, grid data leads to lower 

premiums.  

  

Keywords: RIBI, Limpopo River Basin, Drought, Basis risk, Water scarcity. 

 

1. Introduction 

 

One of the most urgent challenges faced by many farmers and the agricultural sector around the 

world is extreme weather events and climate disasters such as droughts. South Africa is not an 



2 

 

exception since the country has been negatively affected by several drought events over the last 

three decades. For instance, several drought episodes (during the years 1991/92, 1997/98, 

2001/02, 2003/04, 2015/16, and 2017/18) have been experienced in the country. These have not 

only reduced the agricultural performance but also negatively affected the country's long-term 

objective of offering massive agricultural-driven employment opportunities, particularly to the 

previously disadvantaged group of its population (Austin, 2008; Bahta et al., 2016; Vogel et al., 

2000; Mpandeli et al., 2015). Around 245,000 South Africans in the agricultural sector 

experienced a decrease in their livelihoods due to the 1991/92 drought event (Vogel et al., 2000), 

while the overall country area used for maize production dropped from over 5 million hectares 

(1986/87) to 2.7 million hectares in 2008 (Austin, 2008). Other negative implications associated 

with drought events include the loss of approximately 10 million South African rands 

countrywide, and the reduction in agricultural production of 8.4 percent (Bahta et al., 2016). This 

decrease has more severely affected the small-holder farmers who are more vulnerable to 

weather changes, given their limited technological and organizational capacities. 

 

Although actions that aim at mitigating droughts can take several forms (i.e adoption of more 

efficient irrigation technologies, implementation of inter and multi-cropping systems, adoption 

of drought-tolerant crops, etc.), one approach that is often explored in recent years is the 

adoption of rainfall-index-based insurance (RIBI) (Hellmuth et al., 2009, pp.11-12; Woodard and 

Garcia, 2008; Vroege et al., 2019; Kath et al., 2018; Kost et al., 2012). RIBI refers to a crop 

insurance contract whose payments depend upon the performance of a rainfall index measured 

by a rain gauge (or other data sources like satellite-based data) at a predefined location during a 

certain period (Kost et al., 2012; Cole et al., 2011). The principle is to allow farmers to purchase 

insurance from a company to reduce the risks that are associated with drought events, which 

affect crop yields and agricultural performance. The scheme’s primary objective is to build the 

resilience capacity of the farming systems by allowing farmers to transfer the risks associated 

with drought to the insurer. However, one must highlight that the scheme is often faced with 

some technical and informational challenges which limit its widespread use in certain regions of 

the world. Payment is not directly linked to the actual losses incurred by the farmer. This is 
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because there might be situations when farmers experience losses that are due to other causes 

but drought. This is referred to as basis risk (Woodard and Garcia, 2008)1. The direct implications 

of such situations are that farmers may experience losses and not receive payments, or not 

experience losses but still receive compensations. As a result, premiums may be collected from 

farmers who have suffered losses, but who do not receive payments simply because of the lack 

of triggering of the rainfall index.  

 

Conradt et al. (2015) found that basis risk diminishes when there is a strong correlation between 

the selected climatic factor index (i.e drought) and farm yield. One way to overcome the problem 

of basis risks is to make use of satellite-based rainfall data instead of the observational ground 

data when it comes to deciding on whether and how much to compensate the farmer. For some 

areas that exhibit limited observational ground data, this alternative rainfall measurement 

method is shown to yield more accurate estimates (Black et al., 2015). Another method to reduce 

basis risk is the use of synthetic weather that is constructed using several data sources to backfill 

missing gaps (Brissette et al., 2007; Dalhaus and Finger, 2016). Despite such limitations, however, 

RIBI seems to offer several benefits when it comes to mitigating the effects associated with 

drought events. The scheme eliminates the problems of moral hazard and adverse selection, 

encountered under conventional insurance policy schemes (Vroege et al., 2019; Kath et al, 2018). 

 

We investigate the policy of index-based crop insurance in South Africa, one of the most water-

stressed countries in the world. This is done by developing a microeconomic-based farm 

optimization model that investigates the optimal premium farmers are willing and able to pay to 

purchase RIBI and mitigate the effects of water scarcity when they expect future drought events. 

We determine the insurance payment that maximizes the expected utility of the farmer’s 

terminal wealth, given the realized level of rainfall during the crop growing season. The model is 

tested by making use of data from the Luvuvhu catchment of the Limpopo river basin (LRB) in 

 
1 Basis risk refers to the risk that the payout of a RIBI doesn’t correspond to actual farm yield losses. For instance, Mexican farmers received 
payments when they didn’t experience losses in 2005, while in 2006, they experienced losses but not received payments (Scamilla et al., 2009, 
p.50). This risk is faced by both farmers and the insurers. Farmers (or insurers) face basis risk when actual farm yield losses are higher (lower) 
than the insurance payout. Most often, actual yield losses and the insurance payout are never equal since the yield losses depend on other factors 
that are not correlated with rain (i.e. temperature, pests and diseases, etc.). 
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South Africa. Among all the existing international river basins in Southern Africa, the LRB has been 

classified as the one that faces the worse water scarcity challenges. The particularity of the model 

developed in this paper is that it caters for seasonal as well as inter-annual drought variations 

that affect crop growth, depending on the specific stage of the crop growth process.  

 

Most previous studies only looked at the conditions that drive the adoption of index-based crop 

insurance when drought is captured as an average event. We contribute to the stock of the 

existing literature by constructing and applying index-based crop insurance that is based not only 

on the seasonal amount of precipitation compared to the crop requirement but also on sub-

seasonal precipitation distribution. This allows us to go beyond the conventional approach and 

take into account the different stages of crop development and the relative sensitivity of the 

overall crop (yield) to the stress days in each of the growing stages (Dalhaus and Finger, 2016; 

Bucheli et al., 2020). Another extension of our model covers the comparison of the optimal 

premiums with rainfall data from a weather station that is located in the vicinity of the farm 

versus weather data that makes use of satellite. The objective of this comparison is to offer a 

more precise estimation of the optimal compensation that must be paid to farmers when they 

aim to mitigate drought events in South Africa.  

 

This paper is organized as follows: Section 2 describes the single crop farm-level optimization 

model we developed to investigate the viability of a rainfall-index insurance contract. We present 

some propositions that provide a general solution to the model (Their proof appears in the 

Appendix). Furthermore, in section 3, we discuss the Luvuvhu catchment area in South Africa, 

where the model is empirically applied. In Section 4, we describe the data and data-collection 

process. The findings of the empirical application are then presented and discussed in Section 5. 

Then finally, in Section 6, we conclude and discuss policy implications. 

 

2. The model 

 

Our point of departure is a farmer who wants to mitigate the risk of drought facing her farm to 

avoid a decrease in crop yield, and ultimately welfare loss. This is done by purchasing rainfall-



5 

 

index-based insurance (RIBI) provided by an insurance company. Assume that the farmer 

purchases the insurance contract at the beginning of the emergence stage (stage VE in Figure 1), 

the planting time. We further assume that the insurer pays the compensation (if payment is 

triggered) only after the maturity stage of the crop production cycle (stage R6), which is at the 

end of the harvesting time.  

 

 

 

Figure 1: Maize crop growth stages.  

Source: Dlamini (2015). 

 

During the crop production cycle, the daily rainfall measurements are recorded. To avoid basis 

risk, we assume that drought is the dominant cause of crop losses in agricultural production at 

the vicinity of the farm, and that rainfall measurements are also carried out at the vicinity of the 

farm. In the absence of a weather station in the farm’s vicinity, the closest weather station from 

the surrounding areas is used. But, the shorter the distance between the weather station and the 

farm, the larger is the reduction of the basis risk. After the maturity stage (R6), the daily rainfall 

measurements are aggregated to form the total amount of rainfall received over the crop 

production cycle. The cumulative rainfall index which represents the total amount of rainfall 
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received over the crop cycle is given by ! = ∑!"#$ $", where % and $ represent the time in 

days and the observed rainfall measurement in &&, respectively. The insurance payment is 

triggered when the cumulative rainfall index (!) falls below the crop water requirement '%. In 

this paper, the crop water requirement is referred to as the threshold or trigger value. The insurer 

and the farmer agree to the specific value of the threshold when they enter into the contractual 

agreement. The insurance payment is given by ℎ(!) = + ⋅ &-'('% − !, 0) , where + 

represents the conversion factor that transforms the rainfall index into money. In addition, the 

parameter + represents the insurer’s monetary payment (to the farmer) per && of rainfall 

below the crop water requirement. The distance between '% and ! provides the deviation of 

the cumulative rainfall value from the threshold. If that deviation is positive, compensation is 

paid to the farmer, and as highlighted above, regardless of whether the farmer has encountered 

losses or not. When the deviation is negative (or equal to zero), the farmer receives no 

compensation2.  

 

However, given the fact that there is always a high level of uncertainty associated with rainfall, 

we assume that ! is a random variable that is defined over the set of rainfall climate in the 

vicinity of the farm [0, '̅]. The set of possible rainfall values is defined as a collection of all values 

that ! can take. The value '̅ represents the maximum total rainfall that can be observed in the 

vicinity of the farm over the crop production cycle, the minimum being zero. The probability 

density function of ! is given by 4(!) > 0. We assume that 4(!) is continuous on the set of 

possible rainfall values [0, '̅]. In the literature, precipitation variables have been modeled using 

several distributions. For instance, gamma, log-normal, Weibull, and the beta distributions have 

all been used to model the evolution of precipitation (Martin et al., 2001; Rey et al., 2016). 

Rainfall measurements cannot be negative, they only take positive values starting from (and 

including) zero to positive infinity. The set of possible rainfall values for which the 

aforementioned distributions are defined contains only non-negative values, which well coincide 

with all precipitation variables and indices. Except for the Weibull distribution, all distributions 

indicated above are not defined at ! = 0 . The beta distribution is defined at ! = 0  but 

 

2 Since the premium is a function of !!, the farmer has no incentive to declare a too high or too low values of !!. 
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bounded above by ! = 1, which does not correspond to the maximum total rainfall '̅ that can 

be received in the vicinity of the farm. Therefore, we consider the Weibull distribution defined in 

Equation (1) below.  

 4(!) =
&

'
[
(

'
]&)$e)((/')

!
, ! ≥ 0. (1) 

 

In equation (1), & > 0 and : > 0 represent the shape parameter and the scale parameter, 

respectively. An additional advantage of this distribution function is that its density can be 

truncated on the right (at ! = '̅), hence excluding the values that are not on the set of possible 

rainfall values of !. At the harvesting stage, the farmer harvests the remaining crop that survived 

the drought (if there was a drought) to generate revenue by selling on the market. The quantity 

produced by the farmer after the harvest is measured by a yield function. Most crop-water yield 

functions are quadratic in water because represent marginal damages to yield from over-

irrigation in the form of soil aeration and salinity that lead to much of the over-irrigation not 

being efficiently used by the plant to crop production. Assuming a rational farmer, we employ a 

linear relationship that represents high application efficiency. We define the yield function ;(!) 

using the crop water production function as suggested by Conradt et al. (2015).   

 ;(!) = < + >! + ?. (2) 

 

Where >, <, and ?, represent the slope coefficient (the change in yield per 1		&& change in 

rainfall !), the intercept, and the random error, respectively. The random error accounts for 

other factors that are uncorrelated with rainfall but have an influence (or effect) on yield. In 

addition, the error term represents the unexplained variance 3  in yield. To determine the 

threshold, it is commonly assumed that the compensation to farmers is based on below-average 

rainfall amounts (Bucheli et al., 2020; Dalhaus and Finger, 2016; Conradt et al., 2015). The main 

assumption is that the average rainfall level gives (or leads to) the average crop yield. The index 

value that corresponds to ;A  (the mean crop yield) becomes the threshold of the insurance 

contract. That is substitute ;A, >, and <  into the production function (2) and solve for the 

corresponding index value. Without loss of generality, we assume that rainfall is the only source 

 
3 The unexplained variance represents the basis risk of the RIBI (Conradt et al., 2015). 
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of water available for irrigation. The yield function is estimated using Quantile Regression (QR). 

Unlike the Ordinary Least Squares (OLS) which is a mean-conditioning approach, QR is a quantile-

conditioning approach. The QR method minimizes the sum of absolute deviations (residuals not 

symmetrically weighted) instead of the sum of the squared deviations. The quantile of interest is 

specified by the parameter 0 < C < 1. Lower values of C imply that there is a lower chance that 

the observed yield is below the predicted yield, hence minimizing downside risk. The 

minimization problem is as follows  

 >D(C) = argmin-∈ℝ[C ∑01-( |; − >!| + (1 − C)∑02-( |; − >!|]. (3) 

 

Following Conradt et al. (2015) and Bucheli et al. (2020), we set C = 0.3 to sufficiently capture 

the low yield observations. We denote by M the premium paid by the farmer and assume that 

the premium is subsidized at a rate N, with 0 ≤ N < 1. Therefore, assuming that the farmer’s 

initial wealth is P (non-random), the farmer’s expected utility of terminal wealth is given by  

 Q[R(P + S ⋅ ;(!) + ℎ(!) − (1 − N)M)]. (4) 

 

Where R represents the utility of the farmer with the following characteristics: R3 > 0 and 

R33 ≤ 0. The market output (crop) price is denoted by S. We make use of a decreasing absolute 

risk aversion (DARA) utility function R(T) =
4"#$

$)5
, T > 0, U ≠ 1	-WX	U > 0 . Previous studies 

have shown that most farmers exhibit primarily a decreasing absolute risk aversion (Rey et al., 

2016). We further postulate that farmers are charged with a cost (premium) that is paid to 

receive insurance coverage. The insurance cost will be defined as the expected value of the 

insurance payment  

 M = YQ[ℎ(!)]. (5) 

 

Where Y > 1 is the insurance loading4 (Y = 1 implies the actuarially fair insurance contract). 

Therefore, after combining (4) and (5) the maximization problem of the farmer becomes  

 
4 Insurance loading is an extra cost (which is part of an insurance contract) that covers losses which are higher than expected by the insurer. 
Such higher losses than anticipated arise from insured individuals who are susceptible (or prone) to a certain risk. For instance, the insured may 
be deemed prone to a certain risk due to her medical history (in medical insurance policies) or her past time exposure to an imminent risk of 
disaster (like farmers located in an area which is prone to droughts). The insurance loading also takes into account the insurer’s transaction 
costs. 
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 max6(.) ∫
8̅

:
R[P + S ⋅ ;(!) + ℎ(!) − (1 − N)M]4(!)X!, (6) 

subject to  

 M = Y ∫
8̅

:
ℎ(!)4(!)X!, (7) 

  

 ℎ(!) ≥ 0. (8) 

 

Equations (6) and (7) represent an isoperimetric problem in the optimization problem above. To 

solve the optimization problem, we convert the integral constraint into a differential equation, 

which transforms the entire problem into an optimal control problem. The aforementioned 

conversion is stated in the following theorem.  

 

Theorem 1. (Equivalent constraint representation)  Let ℎ(!) and M be the payment function 

and the insurance premium, respectively. Assuming that M is fixed (constant), then the constraint 

(7) is equivalent to Equation (9) below  

 

 \̇(!) = Yℎ(!)4(!), \(0) = 0, \('̅) = M. (9) 

  

A proof of this theorem is given in the Appendix.  

 

Therefore, the problem of the farmer is to determine the value of the insurance payment ℎ(!) 

that maximizes (6) subject to the constraints (8) and (9). Proposition 1 presents the optimal 

solution to this problem.  

 

Proposition 1. (Optimal payment)  If the farmer maximizes terminal wealth according to (8 - 9), 

the optimal payment function (ℎ∗(!)) is determined by the following expression. 

  

 ℎ∗(!) = ^
S[;('%) − ;(!)]										∀!	 ∈ 	 [0, '%),
0										∀!	 ∈ 	 ['%, '̅].

 (10) 
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A proof of this proposition is given in the Appendix.  

  

Proposition 1 determines that the optimal payment is equivalent to the amount of money by 

which the actual farm yield’s income falls short of the anticipated revenue when there is 

sufficient irrigation water. Therefore, rainfall index insurance compensates the farmer for the 

monetary losses experienced as a result of poor rainfall. Furthermore, we observe that the higher 

is the market output price, the higher is the optimal insurance payment. Low rainfall leads to low 

crop yield which further results in inflated prices of outputs. Prices are inflated to balance supply 

and demand as there will be a lower level of outputs to be supplied than what is demanded by 

the consumers. Hence, when output prices go up, the optimal insurance payment also goes up 

to fully compensate the farmer for the low crop yield obtained due to low rainfall. The limit of 

h∗(X), as X goes to zero, is equal to pβx<. The value pβx< represents the maximum amount 

of money that the insurance company can pay to the farmer in the event that there was no 

rainfall recorded in the farm's vicinity throughout the growing season. Thus, the lower the total 

rainfall level on the farm throughout the contract (or the crop production cycle), the higher the 

payment from the insurer to the farmer, or the closer the payment (from the insurer to the 

farmer) to the value pβx<. Substituting the optimal payment from equation (10) into equation 

(7) produces the optimal premium that farmers are willing to pay to purchase the insurance 

contract. Proposition 2 presents the optimal premium. 

 

 

Proposition 2. (Optimal premium)  The optimal cost M∗ of the insurance policy is determined 

by the following expression. 

  

 M∗ = SY>('% ⋅ e('%) − Q[![:,8%)]) (11) 

   

A proof of this proposition is given in the Appendix.  
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The cumulative density function F(X) is a right continuous, non-decreasing function. Hence, the 

premium rises as the crop’s water requirement rise. The marginal product of water affects both 

the premium and the insurance payment. The higher the water’s marginal product, the larger is 

the premium and the payoff to the farmer. We then proceed to the condition that must be met 

for the farmer to consider obtaining an index insurance contract or protection. The necessary 

condition for the farmer to purchase the insurance policy with the payoff ℎ∗(!) and premium 

M∗ is 

 

 Q[R(P + S ⋅ ;(!) + ℎ∗(!) − (1 − N)M∗)] − Q[R(P + S ⋅ ;(!))] ≥ 0. (12) 

 

In the empirical section of this paper, this condition will be examined. We further study the 

optimal payoff payment, when the distribution of rainfall is considered. This is because previous 

studies show that the distribution of rainfall could be more crucial in crop development than the 

overall amount of rainfall received over the crop growing cycle (Monti and Venturi, 2007). Crops 

require more water in some growth stages which are referred to as the critical stages. Once 

seeded, the seed soaks up water and begins to develop seedlings. If the soil is not sufficiently 

moist, the seed dies or either takes longer to germinate. This occurs mostly under rain-fed 

conditions where seeding is usually done when there is no adequate water in the soil, most often 

in dry soil while waiting for rainfall (Belfield and Brown, 2008). Emerging seedlings begin to 

provide water (and nutrients) to the crop from the soil which takes it to the second stage (stage 

V1 in Figure 1). Similarly, seedlings dry out under poor soil moisture conditions which causes the 

plant to die. Another critical period in the maize growth cycle is the silking stage (stage R1). During 

this stage, the crop requires a lot of water such that the silks don’t dry out and fall off, which 

leads to fertilization, not occurring for all kernels, and hence a lower seed amount (Belfield and 

Brown, 2008; Hanway, 1966). Farmers’ decisions to adopt an RIBI also vary based on the 

magnitude of the impact and risk at each stage of crop growth. For instance, at R1, there is a low 

risk attached since a larger portion of the growth cycle is observed, and there is more information 

on how the yield might turn out. But, a high-impact event could happen in the event of a drought. 

To incorporate the several growth stages of the crop, we define the yield function as: ;(!?) =
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<? + >?!? + ??, 1 < g ≤ &. The subscript g represents the crop’s growth stages. The farmer’s 

expected utility of terminal wealth and her premium is given by Q[R(P + S∑? ;(!?) +

∑? ℎ(!?) − (1 − N)M)]  and M = YQ[∑? ℎ(!?)] , respectively. Therefore, the maximization 

problem of the farmer becomes 

 

 max6(.) ∫
8̅&
:
R[P + S∑? ;(!?) + ∑? ℎ(!?) − (1 − N)M]4(!?)X!? , (13) 

 subject to  

 M = Y ∫
8̅&
:
∑? ℎ(!?)4(!?)X!? , (14) 

  

 ∑? ℎ(!?) ≥ 0. (15) 

 

In Proposition 1, we found the optimal payment to the farmer when crop growth stages are 

ignored but only the overall growing season is considered. Proposition 3 presents the optimal 

payment for the case where the growing season is sub-divided into multiple stages of crop 

growth. Likewise, in Proposition 2, we found the optimal premium for the case where crop 

growth stages are ignored. The optimal premium for the case where the growing season is sub-

divided into multiple stages of crop growth is presented in Proposition 4. 

 

Proposition 3. (Optimal payment)  If the farmer maximizes terminal wealth according to (14 - 

15), the optimal payment function (∑? ℎ∗(!?)) is determined by the following expression.  

 ∑? ℎ
∗(!?) = ^

S[∑? [;('%?) − ;(!?)]]										∀		!? 	 ∈ 	 [0, '%?),

0										∀		!? 	 ∈ 	 ['%? , '̅?].
 (16) 

   

A proof of this proposition is given in the Appendix. 
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Proposition 4. (Optimal premium)  The optimal cost M∗ of the insurance policy is determined 

by the following expression.  

 M∗ = SY ∑? >?('%? ⋅ e('%?) − Q[![:,8%&)
? ]) (17) 

   

The proof of this proposition is similar to that of Proposition 2.  

 

The total insurance payment to farmers over the growing season is simply the sum of the 

insurance payments made at each crop development stage. Likewise, the total premium to be 

paid by the farmer to the insurance company is the sum of the premiums quoted at each crop 

development stage. Proposition 3 demonstrates that the overall optimal payment over the 

growing season is equivalent to the sum of the amount of money by which the actual farm yield’s 

income falls short of the anticipated revenue in the case that there is a sufficient amount of 

irrigation water at each crop growth stage. Furthermore, we observe that the higher the market 

output price, the higher the optimal insurance payment for individual crop growth stages and, as 

a result, the higher the overall growing season optimal insurance payment. The impact of the 

crop water requirement and the marginal product of water on the optimal payment and premium 

for individual growth stages is similar to the first scenario when growing stages were not taken 

into account. The only distinction is that some growth stages have a greater impact on the overall 

insurance payment and premium than others. For example, the higher the crop growth stage 

marginal product of water, the larger the premium and payment to the farmer during that growth 

stage. As a result, crop growth stages that are associated with a larger marginal product of water 

increase the farmer's overall payment compared to stages with a lower marginal product of 

water. The necessary condition for the farmer to purchase the insurance policy with the payoff 

∑? ℎ
∗(!?) and premium M∗ when crop growth stages are considered is 

 

 Q[R(P + S∑? ;(!?) + ∑? ℎ
∗(!?) − (1 − N)M

∗)] − Q[R(P + S∑? ;(!?))] ≥ 0. (18) 

 

The aforementioned results will be investigated in the empirical section of this study due to the 

complexity of the above expressions.  
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3. The study area: The Luvuvhu catchment of the Limpopo River Basin 

  

The Luvuvhu catchment management area (Figure 2) is situated in the Limpopo Province of South 

Africa. The mean annual rainfall in the area ranges from 200 to 400 &&, with the rainfall season 

occurring between October to April (Singo et al., 2016). The catchment area remains under-

developed and economically poor (Masupha et al., 2016). The total area covers around 5,941 

square kilometers. According to Jewitt and Garratt (2004), subsistence agriculture and grazing 

take fifty percent of land use in the area. Maize is the main staple food in the catchment area, 

cultivated by small-scale subsistence farmers. A significant number of the area’s inhabitants 

depend entirely on dry land maize cultivation, animal farming, as well as on remittances from 

employed family members who migrated to metropolitan areas townships (DWAF, 2004). Maize 

is completely rain-fed in the small-scale farming areas (Bouagila and Sushama, 2013), hence, it is 

affected by intense drought conditions due to the high rainfall variability in the area. 

 

. 

  

Figure 2: The Luvuvhu catchment area map. 

Source: Masupha (2017). 
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4. Numerical applications 

 

Daily precipitation and temperature data from the nearest meteorological station (from 1989 to 

2020) used in this study were obtained from the South African Agricultural Research Council 

(ARC). The nearest weather station to the farm is the Levubu weather station. Missing rainfall 

data were estimated using the Inverse Distance Weighting (IDW) method which is used in 

previous studies (Bartier and Keller, 1996; Lu and Wong, 2008). The method assumes that the 

nearest weather stations have a huge influence on the target weather station data.  

 

The gridded daily rainfall data was obtained from the Royal Netherlands Meteorological Institute 

(KNMI) Climate Explorer, and freely available online (https://climexp.knmi.nl/start.cgi). The KNMI 

Climate Explorer CPC (Climate Prediction Center) provides gridded daily precipitation data and 

long-term means of monthly and daily precipitation data. The data was produced by the NOAA 

Climate Prediction Center global unified gauge-based analysis of daily precipitation, with a 

dataset covering the period from 1979 to the present. It combines historical (and recent) land 

surface observations from different sources into global estimates of precipitation data using 

advanced data assimilation and forecasting models. The CPC Global Daily Unified Gauge-Based 

Analysis of Precipitation has a geospatial resolution of 0.5 degree latitude times 0.5-degree 

longitude. 

 

Masupha et al. (2016) found that sowing maize in the Luvuvhu catchment area in October (early 

planting) exposed the crop to a higher risk of droughts than sowing it in December (late planting) 

or November (mid planting). Late planting exposes maize to frosts (as well as water shortages), 

slowing crop growth. Thus, in this study, planting is considered to begin in November each year. 

The growing period lasts from November to April, with winter frosts starting shortly before the 

end of April. The first day of the month is picked as the start date for the growing period. We 

follow previous studies and assume that the length of time it takes for a crop to attain maturity 

or finish a specific growth stage is directly related to temperature (Roberts et al., 2013), if we 

control for other inputs. Growing degree days (GDD) are used to calculate the end date of the 
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growing period, as they determine when the crop enters each growth stage. Growing degree 

days were estimated mathematically using Equation (19) below (Anandhi, 2016)5.  

 

 hii =
@!'(A@!&)

B
− 10∘j. (19) 

   

 k&?! = l
30∘j										k&?! ≥ 30∘j,
k&?!										10

∘j < k&?! < 30∘j,
10∘j										k&?! ≤ 10∘j.

 (20) 

  

 k&D8 = l
30∘j										k&D8 ≥ 30∘j,
k&D8										10

∘j < k&D8 < 30∘j,
10∘j										k&D8 ≤ 10∘j.

 (21) 

 

The parameters k&D8 andk&?! represent the daily maximum temperature and daily minimum 

temperature, respectively. A 1500 degree Celsius maize hybrid enters into the tassel initiation 

stage (V5) at 264 degrees Celsius, the tassel emergence stage (VT) at 639 degrees Celsius, the 

blister stage (R2) at 904 degrees Celsius, and the physiological maturity stage (R6) at 1500 degree 

Celsius (Neil and Newman,1990; Duncan et al., 2010). As a result, we divided the growing period 

into four stages: establishment (VE-V5), vegetative (V6-Vn) 6 , flowering (VT-R1), and yield 

formation and ripening (R2-R5). Because harvesting occurs within the physiologic maturity stage, 

it is not included in the index calculation. 

 

Given the fact that individual farm maize yield data from the Luvuvhu river catchment area and 

the rest of South Africa is severely lacking, we made use of the conventional FAO yield coefficient 

approach (FAO-56) (Allen et al., 1998) to simulate maize yield as a function of direct precipitation. 

 

 T = TE[1 − m0(1 −
F@G

F@H
)]. (22) 

 
5 Maize crop growth is halted at temperatures below 10 degrees Celsius. When the temperature rises above 30 
degrees Celsius, maize roots struggle to absorb enough water to keep the crop growing at full pace (Duncan et al., 
2010). Equations (20) and (21) are simply conditions to ensure that !*+, and !*-. are within the appropriate 
temperature range for maize crop growth. 
6 Vn represents the nth leaf stage. 
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The parameters T, TE, m0, nko, and nkj represent the simulated crop yield, the crop yield 

potential when water is not a constraint, the empirical FAO crop yield response factor, the actual 

crop evapotranspiration, and the crop evapotranspiration when water is not a constraint, 

respectively. ETA represents the crop evapotranspiration under non-standard conditions (when 

water is a constraint). For maize, the FAO seasonal yield response factor is 1.25 (Doorenbos and 

Kassam, 1998). The area’s maximum crop yield is assumed to be 6 tons per hectare. This is due 

to the fact that the average rain-fed maize yield in the area is between 2 and 6 tons per hectare 

(Lacambra et al., 2020). Environmental factors such as radiation, temperature, humidity, and 

wind speed, as well as crop type and growth stage, all influence ETC. The FAO single crop 

coefficient approach (nkj = mI ⋅ nkJ) is used to calculate ETC, where mI  and nkJ represent 

the crop coefficient, and the reference crop evapotranspiration, respectively. nkJ  is the 

evapotranspiration rate from a non-water-stressed reference surface (usually a grass reference 

crop). The FAO-56 (Allen et al., 1998) method of estimating missing weather data was used to 

estimate missing meteorological data that are compulsory to determine the yield function. The 

common complimentary relationship nko + nkj = 2 ⋅ nkq  is used to determine ETA 

(Bouchet, 1963). ETW represents the wet environment evapotranspiration (evapotranspiration 

from a moisturised surface). The Priestley-Taylor equation is used to calculate ETW (Priestley and 

Taylor 1972). 

 

 nkq = ? ⋅
K

KAL
($! − h). (23) 

 

The parameters ?, r, s, $!, and h represent the Priestley-Taylor evaporation coefficient, the 

slope of the saturation vapor pressure curve at the air temperature, the psychometric constant, 

the net radiation, and the soil heat flux, respectively. Weather variables such as mean daily 

temperature, maximum daily temperature, minimum daily temperature, and actual vapor 

pressure were used to calculate net radiation. Because the amount of the daily or 10-day soil 

heat flux is very small in comparison to net radiation, it is frequently ignored, resulting in h ≈ 0 

(Allen et al., 1998).  
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The market output maize price (R2345.07 per ton)7 was obtained from the South African Grain 

Information Service (SAGIS). This was the market output maize price for the 2019/2020 season, 

which is the last season in our empirical analysis. The lowest market output maize price from 

2010 to 2020, according to the South African Grain Information Service, is R1,131.50 per ton. To 

capture low market output price events, we use this value in the sensitivity analysis. For a sample 

of South African farmers, the risk aversion coefficient was estimated to be 0.169 (Gwata, 2010). 

Since r > 0 and is never equal to 1, we assume that the risk aversion coefficient is equal to 0.05 

for the sensitivity analysis to capture low levels of risk aversion. The loading factor for health 

insurance and access in South Africa ranges from 0.67 to 0.85 (Urban and Streak, 2013). We 

assume that the loading factor is 0.67 for simplicity and without a loss of generality. We use the 

value 0.85 for the sensitivity analysis. 

 

In previous studies, the average level of direct payments made to farmers was employed as a 

proxy for measuring the farmer's initial wealth (Dalhaus and Finger, 2016). Due to a lack of direct 

payments data for South African maize farmers, we use the farmer’s average level of net income 

as a proxy to estimate the farmer's initial wealth. An average net income of R26,600.00 per year 

is reported for a sample of South African small-holder farmers (Zantsi et al., 2019). The average 

cultivated land area is roughly 2.7 hectares (Zantsi et al., 2019). As a result, we assume that the 

farmer's initial wealth is R9,851.85. The simplified method of moments was used to estimate the 

parameters for the Weibull distribution (Faraji et al., 2020). The shape and scale parameters for 

seasonal station data are 2.45 and 1130.04, respectively. Station data stages 1, 2, 3, and 4 have 

shape parameters of 2.21, 2.44, 1.04, and 1.33, respectively. Similarly, the scale parameters for 

stages 1, 2, 3, and 4 of station data are 159.33, 256.9, 228.7, and 443.71, respectively. The shape 

and scale parameters for seasonal grid data are 3.46 and 601.17, respectively. Grid data stages 

1, 2, 3, and 4 have shape parameters of 2.06, 2.24, 1.25, and 1.96, respectively. Similarly, the 

scale parameters for stages 1, 2, 3, and 4 of grid data are 99.96, 156.36, 119.59, and 228.06, 

respectively. 

 
7 This was the market output maize price for the year 2020, the equivalent in US dollars was 142.38. 
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Table 1: Economic values of the Luvuvhu catchment area maize production in the base case.  

Parameter  Description   Units   Value  

S  Price per output  Rand per Ton   2,345.07  

U  Risk aversion coefficient   -   0.169  

Y  Loading factor  Percentage   1.67  

N  Subsidy  Percentage   0 

C  Quantile  Percentage   0.3  

&   4(!) shape parameter   -   2.45 (station data) 

 3.46 (grid data) 

:   4(!) scale parameter   -   1130.04 (station data) 

 601.17 (grid data) 

P  Initial wealth  Rand per hectare        9,851.85  

 

 

5. Results and discussions 

 

The section on results is broken into two sub-sections. The first section examines the entire 

growing season, while the second examines the crop growth stages. Weather station data and 

grid data will be analyzed, and the efficiency of each outcome (payment and premium) will be 

compared. 

 

5.1 Entire season 

 

Our results (Table 2) show that, when grid data is used, we have a higher coefficient of 

determination (represented by $B  on Table 2), smaller standard error of the coefficient 

estimates, and a smaller standard error of regression than situations when weather station data 

is used to promote RIBI contracts. This confirms the assumption made earlier: the use of grid data 

during the design of the RIBI contract leads to a lower basic risk. Previous studies have found 
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similar conclusions (Dalhaus and Finger, 2016; Bucheli et al., 2020). As a result, index insurance 

contracts designed by using grid data are more appealing to farmers than contracts designed by 

using weather station data. This is because neither the insured nor the insurer wants to be 

associated with a higher basis risk. The insurance company will benefit from the use of grid data 

in constructing index insurance contracts since the uptake of insurance contracts by farmers will 

be high. In addition, higher basis risk might deter the reputation of the insurance company and 

create a situation whereby such incidents can negatively impact some other derivative insurance 

products sold on the market (life insurance, etc.). 

 

Table 2: Main estimation results of the yield function. 

Parameters Weather station data Grid data 

c (intercept) 0.873799  (0.0006) 0.684796  (0.0267) 

Marginal product of water (>) 0.000282  (0.1979) 0.001056  (0.0439) 

$B 0.085631 0.125551 

S.E. of regression 0.456656 0.398387 

S.E. of coefficient 0.00214 0.000501 

Crop water requirement ('%) 1805.39 661.1 

Notes: Parentheses indicate the P-value at a 5% significant level. 

 

Relative to the premium, we found (Table 3) that the optimal premium for seasonal when grid 

data are used (R600.67) is lower than the optimal premium when weather station data are used 

(R896.61). This means that in terms of farmers' affordability to purchase rainfall index insurance 

contracts in the study area, the use of grid data in designing the contract is preferable to the use 

of weather station data. Furthermore, we ran a sensitivity analysis to simulate the extent to 

which changes in the selected parameters (the market output price, the insurance loading factor, 

the crop water requirement, and the marginal product of water) would affect the optimal 

premium patterns. We observe (Table 3) that the higher (base case values doubled) the crop 
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water requirement (CWR)8 and the marginal product of water (MPW)9, the higher the optimal 

premium to the farmer. When the crop water requirement is increased, there is a greater chance 

(in drought-prone areas) that there will not be enough rainfall to meet the crop water 

requirement level, as opposed to when the crop water requirement is low. As a result, raising the 

crop water requirement increases the insurer's risk, and hence the premium.  

 

Table 3: Main results of the optimal premium function in the base case. 

 Premium (Rands) 

 Weather station data Grid data 

Base case 896.61 600.67 

Reduction in market output price (S) 432.62 289.83 

Increase in the loading factor (Y) 993.25 665.42 

Increase in the Crop Water Requirement ('%) 2880.9 3232.5 

Increase in the Marginal Product of Water (>) 1793.2 1201.3 

 

In addition, we increase the loading factor (Table 3) to investigate the differences in the optimal 

premium for insurers with higher internal expenses, taxes, and profit margins versus insurers 

with lower expenses, taxes, and profit margins (base case scenario). We found that the higher 

the insurance loading factor, the more expensive is the premium. Relative to the market output 

price, we reduce it to account for non-drought events in which the market price is lower because 

the supply of outputs exceeds the demand. The lower the market output price, the lower the 

optimal premium (Table 3). This means that index insurance contracts are more expensive to 

purchase in drought-prone areas, where supply is often likely to be far less than demand.  

 

 
8 This is the threshold value "/ that triggers the insurance payment to the farmer if and only if the cumulative 
rainfall index (X) falls below this value "/. If the cumulative rainfall index (X) is greater than or equal to "/, the 
farmer receives no compensation, regardless of whether or not the farmer has suffered losses. 
9 This is the crop-water yield function's slope coefficient #. Because it represents the change in yield per 1 mm 
change in water (rainfall X), it is referred to as the marginal product of water. 
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The insurance payment that maximizes the farmer's expected utility of final wealth is defined as 

the optimal payment to the farmer. The option with the highest optimal payment pattern (use 

of grid data or the use of weather station data in the contract’s design) is defined as the most 

preferred option to farmers. Drought is represented by lower rainfall index values (Figure 3), as 

high values indicate a large amount of rainfall received during that rainfall period. The closer the 

rainfall index gets to zero, the worse the drought becomes. As a result, we found (Figure 3) that 

when the drought is severe, the use of grid data when designing the contract is the farmer's most 

preferred option in terms of optimal payment. Only during low-intensity drought events may 

farmers prefer contracts designed using weather station data. In addition, we found that when 

grid data are used farmers tend to receive a higher payment (Figure 3) at a lower premium (base 

case in Table 3) than situations when weather station data are used. 

 

 

Figure 3: The optimal payment function for seasonal weather station and grid data in the base 

case.  

 

Furthermore, we ran a sensitivity analysis to simulate the extent to which changes in the selected 

parameters (the market output price, the crop water requirement, and the marginal product of 

water) would affect the optimal payment patterns. We found (Figure 4) that the higher the crop 

water requirement and the marginal product of water, the higher the optimal payment to the 
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farmer. Relative to the marginal product of water (MPW), for instance, we found that when grid 

data are used farmers tend to receive a higher payment (Figure 4) at a lower premium (Table 3) 

than when weather station data is used to confirm the drought damage. Relative to the crop 

water requirement (CWR), the use of grid data is associated with a higher payment to the farmer 

at a higher premium than situations when weather station data are used. The lower the market 

output price, the smaller the payment to the farmer (Figure 4). The theoretical analysis has 

already validated these findings. 

 

 

Figure 4: The optimal payoff function for seasonal grid data in the sensitivity case.   

 

Because all of the parameters (CWR, MPW, market output price) involved in computing the 

optimal payment are positive for both weather station and grid data, changing one parameter 

when using station data has the same effect on the insurance payment as changing the same 

parameter when using grid data. This has been tested for both grid and station datasets. As a 

result, the sensitivity analysis of the parameters will only be shown using grid data. The rationale 

for this is that grid data is less affected by basis risk, and thus, provides more accurate maize yield 

projections in the area. 
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Table 4: Main results of the necessary condition for the farmer to purchase the insurance policy. 

 Expected utility  

 Weather station data Grid data 

Base case -3138.9 -2472.8 

Reduction in market output price (S) -2760.8 -2167.5 

Increase in the loading factor (Y) -3139.2 -2476 

Increase in the Crop Water Requirement ('%) -3186.9 -3302.1 

Increase in the Marginal Product of Water (>) -3262.1 -2673.4 

Increase in the subsidy constant (N) -3138.6 -2469.4 

Reduction in the risk aversion coefficient (U)  -8523.6 -6722.7 

 

The difference in the expected utility (Table 4) is the condition that a farmer must meet to 

consider acquiring an index insurance contract (inequality in Equation (12)). This is a participation 

constraint in a decision theory framework. This is expressed as the expected utility when a farmer 

purchases an insurance policy minus the expected utility when she does not (the difference 

between the two expected utilities). The use of both grid and weather station seasonal data 

shows that acquiring insurance protection provides the farmer with a lower expected utility than 

not having one because the difference in Equation (12) is less than zero in both cases. When 

comparing seasonal weather station data to seasonal grid data, we found that acquiring an 

insurance policy created using seasonal grid data always has the biggest negative difference, 

hence generating more losses. This indicates that the expected utility of obtaining an insurance 

policy based on grid data is always higher than that of purchasing an insurance policy based on 

weather station data, even though being uninsured still leads to a higher expected utility than 

being insured. 

 

Furthermore, we ran a sensitivity analysis to simulate the extent to which changes in the selected 

parameters (the market output price, the crop water requirement, loading factor, subsidy 

constant, risk aversion coefficient, and the marginal product of water) would affect the expected 

utility for the farmer when purchasing an insurance policy. When seasonal weather station and 
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grid data are used in contract design, the expected utility criterion (in Table 4) increases (having 

lower negative values than the base cases) when the market output price drops and the subsidy 

constant increases. This means that, relative to the subsidy constant, the larger the subsidy, the 

higher the farmer's expected utility from acquiring insurance protection. When the loading factor 

is large, the expected utility criterion is expected to be higher (having lower negative values than 

the base cases) since the farmer is charged more, i.e. a higher premium. We also reduced the risk 

aversion coefficient to accommodate slightly risk-averse farmers. We found that the expected 

utility decreases (having higher negative values than the base case). This means that less risk-

averse farmers will obtain the least expected utility from purchasing insurance protection. 

 

5.2 Crop growth stages. 

 

Our results (Table 5) show that, when grid data is used, we have a higher coefficient of 

determination (represented by $B on Table 5), and a smaller standard error of regression per 

growth stage than situations when weather station data is used to promote RIBI contracts. Only 

in stage 4 does the use of grid data result in a lower coefficient of determination than the use of 

weather station data. However, we found (Table 5) that using grid data per growth stage 

minimizes basis risk considerably better than using weather station data for the other three 

stages. 

 

Table 5: Main estimation results of the yield function per growth stage. 

Parameters Weather station data 

 Stage 1 Stage 2 Stage 3 Stage 4 

c (intercept) 0.959689 

(0.001) 

1.118944  

(0.0002) 

0.948363 

(0.0000) 

0.952569 

(0.0000) 

Marginal product of 

water (>) 

0.001372 

(0.3547) 

0.000150 

(0.9012) 

0.000764 

(0.2988) 

0.000465 

(0.1053) 

$B 0.028045 0.002400 0.025468 0.125769 

S.E. of regression 0.480335 0.481791 0.488904 0.481007 
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S.E. of coefficient 0.001459 0.001194 0.000722 0.000278 

CWR ('%) 308.4759 1759.83 568.79 925.4817 

Parameters Grid data 

 Stage 1 Stage 2 Stage 3 Stage 4 

c (intercept) 0.895279 

(0.0002) 

0.926876 

(0.0010) 

0.949893 

(0.0000) 

0.991899 

(0.0005) 

Marginal product 

of water (>) 

0.003782 

(0.0826) 

0.001614 

(0.2858) 

0.001591 

(0.3414) 

0.001023 

(0.3587) 

$B 0.139761 0.103265 0.062094 0.040975 

S.E. of regression 0.406784 0.472490 0.475441 0.468527 

S.E. of coefficient 0.002104 0.001484 0.001645 0.001097 

CWR ('%) 128.94 282.55 272.17 382.23 

Notes: Parentheses indicate the P-value at a 5% significant level. 

 

Relative to the premium, we found (Figure 5) that when crops are insured according to growth 

stages (using grid data and weather station data), the total optimal premium for the entire season 

is very expensive compared to when growth stages are not taken into account (Table 3). 

Furthermore, we found (Figure 5) that, when compared to using weather station data, the use of 

grid data provides the cheapest premium in most growth stages (except for stage 2). This means 

that in terms of farmers' affordability to purchase rainfall index insurance contracts per growth 

stage, the use of grid data in designing the contract is preferable to the use of weather station 

data. We will use the findings of using grid data to make conclusions on the optimal premium in 

the area since using grid data effectively reduces basis risk.  

 

Relative to the premium when grid data is used, stage 3 (flowering) is the most expensive, 

followed by stage 2 (vegetative), stage 4 (yield formation and ripening), and finally stage 1 

(establishment). Stage 1 should be less expensive (relative to the farmer) because there is a lower 

impact associated with drought, much effort has not been spent yet on crop production in this 

stage compared to the final stages. However, because a greater portion of the growth cycle is yet 
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to be observed and no information on how the yield might turn out, there is a high risk associated 

with Stage 1. As a result, stage 1 should be quite costly (relative to the insurer) to compensate 

the insurer for the huge risk being transferred to her. Farmers gain from this kind of premium 

pricing. The insurer gains from stage 3 (most expensive), which is associated with reduced risk 

and a larger impact, while the insured is paid for the high impact she is exposed to.  

 

 

Figure 5: The optimal premium when weather station and grid data are used per crop growth 

stage (in the base case). 

 

It's worth noting that the same optimal premium function that is utilized for seasonal data is also 

used for growth stage data (See equation (11) and (17)). Because all the parameters (CWR, MPW, 

market output price) involved in computing the optimal payment are positive for both weather 

station and grid data, changing one parameter has the same effect on the insurance premium as 

shown for the seasonal premium function. This holds for both the optimal payment and the 

expected utility criterion. As a result, no sensitivity analysis of the parameters will be shown in 

this section.  
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Figure 6: The necessary condition for the farmer to purchase the insurance policy per crop growth 

stage (in the base case). 

 

When growth stages are taken into account, the use of both grid and weather station seasonal 

data shows that acquiring insurance protection provides the farmer with a lower expected utility 

than not having one because the difference in Equation (18) is less than zero in both cases (Figure 

6). Furthermore, when growth stages are taken into account (using grid data and weather station 

data), the total expected utility (Figure 6) is very lower (having higher negative values) compared 

to when growth stages are not taken into account (Table 4). This indicates that the total expected 

utility of obtaining an insurance policy based on growth stages is always higher than that of 

purchasing an insurance policy based on seasonal data, even though being uninsured still leads 

to a higher expected utility than being insured. In the same vein, grid data were used to analyze 

specific growth stages since they minimize basis risk more effectively. Stage 1 has the highest 

difference (having the lowest negative value), followed by stage 3, stage 4, and stage 2, which 

has the lowest difference. This demonstrates that stage 1 provides farmers with the highest 

expected utility from purchasing insurance protection, followed by stage 3, stage 4, and stage 2.  

 



29 

 

 

Figure 7: The optimal payoff function per growth stage when grid data are used. 

 

We can recall (from Table 5) that stage 1 has the highest marginal product of water (0.003782 

ton per hectare per mm) when grid data are used, followed by stage 2 (0.001614 ton per hectare 

per mm), stage 3 (0.001591 ton per hectare per mm), and finally stage 4 (0.001023 ton per 

hectare per mm). As a result, we found (Figure 7) that stage 1 provides the smallest compensation 

to the farmer, followed by stages 3 and 2, except in the worst-case drought events. That is, as 

the drought worsens (as the index approaches zero), the stage with the highest marginal product 

of water provides a higher compensation to the farmer. Similarly, the farmer receives the lowest 

payment during the growing stage with the lowest crop water requirement. From Table 5, stage 

1 requires the least amount of crop water (128.94 mm), followed by stages 3 (272.17 mm), 2 

(282.55 mm), and 4 (382.23 mm). This is justifiable because if the growth stage requires a small 

amount of water, it is less sensitive to water stress. As a result, the farmer's payment at that 

stage of crop growth is likely to be small. 
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Figure 8: The total optimal payment (using weather station and grid data) when growing stages 

during the season are considered (in the base cases). 

 

As mentioned previously, drought is represented by lower rain index values, as high values 

indicate a large amount of rainfall received during that growing season. The closer the rain index 

gets to zero, the worse the drought becomes. Grid data still generates a larger overall payment 

to farmers for worst-case drought events when a farmer insures her crops according to growing 

stages (Figure 8). Only during drought events of low intensity can weather station rainfall data 

result in a larger overall optimal payment to farmers according to Figure 8. 

 

6. Conclusion and Policy Implications 

 

The paper examined the financial viability of RIBI in terms of the payment of a risk-mitigating 

strategy against drought. With an empirical application to the Luvuvhu river catchment, we 

investigated a rainfall index insurance contract. We have shown that optimal insurance payment 

to the farmer does exist. We further found that the use of grid data minimizes basis risk more 

effectively than the use of station data. In addition, we discovered that the most advantageous 

rain index insurance policy for maize farmers in this area is one in which crops are insured 

according to growth stages and the index is calculated using grid data. These findings have 

significant policy implications for crop insurance policymakers in South Africa. The Luvuvhu 

catchment area, for example, is not densely populated with rain gauges. As a result, policymakers 
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may want to consider requiring insurance companies to use grid data for index insurance 

products to be beneficial to farmers. Grid data also provides complete datasets for weather 

variables without inconsistencies. Grid and phenology data needed for estimating drought risks 

for individual farms should be freely available, as this is one of South Africa's key problems. South 

African institutions must empower agricultural extension officers to ensure that this type of 

information is shared with the rest of the country. This is expected to raise the demand for RIBI 

and aid in mitigating the effects of the drought on farmers and society at large.  

 

Furthermore, crop insurance coverage is still acquired throughout the entire growing season in 

South Africa. Based on these findings, policymakers may want to consider enacting rules that 

require insurance companies to deploy crop insurance policies that take into account individual 

crop growth stages. As we have shown from the findings, insuring maize according to individual 

growth stages proved to be more effective than insuring it over the full growing season. 

Policymakers might also want to raise awareness of crop insurance products characterized by 

crop growth stages, as most farmers and insurance companies in the country are lagging in terms 

of these types of insurance products. The technique of calculating a premium is also important 

in determining the effectiveness of an insurance contract. We used the expected value of the 

insurance payment approach to price our premium. We found that the insurer gains from 

premium pricing in some growth stages (stage 3), i.e., receiving a higher premium from farmers 

when there is lower risk associated with that stage. In terms of the insured, she also gains from 

premium pricing in certain growth stages (stage 1), such as paying a lower premium to the insurer 

when that stage is associated with a higher risk. Different results may be obtained if a different 

pricing approach is used. 

 

South African crop insurance policymakers should explore enacting rules that will allow the 

government and private sector to subsidize crop insurance premiums, possibly based on the level 

of risk associated with the growth stage covered by the insurance policy. This is especially 

important since crop insurance is currently not subsidized at all. The lack of a subsidy is one 

aspect cited as contributing to the country's reduced demand for crop insurance products. Our 
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empirical findings show that a bigger subsidy boosts the expected utility of farmers in the 

Luvuvhu catchment area. However, we found that purchasing an insurance plan provides the 

farmer with a lower expected utility than not purchasing one. This is not to say that farmers 

should not buy insurance, they can suffer drought damage and receive compensation from the 

insurer, and the insurance contract has lower premiums than standard crop insurance contracts. 

Finally, we found that the total expected utility of obtaining an insurance policy based on growth 

stages is always higher than that of purchasing an insurance policy based on seasonal data. In 

conclusion, we argue that a rainfall index-based insurance contract can be a viable risk 

management tool for hedging drought risks in the Luvuvhu catchment area. 
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Appendix  

 

Proof of Theorem (1.)  

 

Let \(!) be the state variable which describes the state of the farmer’s terminal wealth when 

an outcome value ! is realised, be defined by  

 \(!) = ∫
(

:
Yℎ(u)4(u)Xu. (24) 

 

Suppose that v(!, u) = Yℎ(u)4(u)  and v((!, u)  are continuous for u ∈ [0, !] . Then we 

differentiate \(!) by applying the Leibniz integral rule as follows  

 \̇(!) =
M

M(
[∫

(

:
Yℎ(u)4(u)Xu] = ∫

(

:

N

N(
Yℎ(u)4(u)Xu = Yℎ(!)4(!). 

To obtain the boundary conditions, we use Equation (24) to get the following  

 \(0) = ∫
:

:
Yℎ(u)4(u)Xu = 0, 

  

 \('̅) = ∫
8̅

:
Yℎ(u)4(u)Xu = M		byEquation(7). 

  

 

Proof of Proposition (1.)  

 

The hamiltonian function of the system (6), (8), (9) is given as follows  

 ℋ(\, ℎ, Ä, Å) = R[P + S;(!) + ℎ(!) − (1 − N)M]4(!) + ÄYℎ(!)4(!) + Åℎ(!), (25) 

 

Hence, the first order necessary conditions are as follows  

 ℋ6(\, ℎ, Ä, Å) = R3[P + S;(!) + ℎ(!) − (1 − N)M]4(!) + ÄY4(!) + Å = 0. (26) 

  

 ℋO(\, ℎ, Ä, Å) = ℎ(!) ≥ 0, Å ≥ 0, Åℎ(!) = 0. (27) 

  

 Ä̇ = 0. (28) 
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 \̇ = Yℎ(!)4(!), \(0) = 0, \('̅) = M. (29) 

From Equation (26), we obtain the value for ℎ(!) as follows.  

 ℎ(!) = R3
#"
[−

PQR(()AO

R(()
] + (1 − N)M − S;(!) − P. (30) 

 

From Equation (28), we determine the value for the costate variable as follows  

 ∫
MP(()

M(
	X! = ∫ 0	X! ⟹ Ä(!) = <. (31) 

Where <  is a constant of integration. Therefore, Ä(!)  is a constant. The costate variable 

represents the farmer’s shadow cost of acquiring the insurance contract. The higher the 

protection being offered by the contract, the higher the premium. Hence, the shadow cost is the 

cost to the farmer for an additional unit of insurance protection. Intuitively, the payment ℎ(!) 

should be equal to zero for all ! values in the set ['%, '̅] contained in the support of !. The 

latter implies that the farmer receives no payment since the observed total rainfall throughout 

the contract was higher or equal to the threshold. Likewise, for all ! ∈ [0, '%), the payment 

should be strictly positive. The latter implies that the farmer receives a payment since the 

observed index value is strictly less than the agreed threshold. Thus, there was a low rainfall 

compared to the threshold. To sum up from the aforementioned observations, a reasonable 

structure of the optimal payment function should be ℎ(!) = 0		∀		! ∈ ['%, '̅], and ℎ(!) >

0		∀		! ∈ [0, '%). As a result, for the case when ! ∈ 		 ['%, '̅], we have that  

 ℎ(!) = 0 ⟹ R3
#"
[−

PQR(()AO

R(()
] + (1 − N)M − S;(!) − P = 0. (32) 

Since Ä = <, we then solve for Å from Equation (32) to get  

 Å(!) = −R3[P + S;(!) − (1 − N)M]4(!) − <Y4(!), ∀	!	 ∈ ['%, '̅]. (33) 

 

To find the value for <, recall the second case when ℎ(!) > 0		∀		! ∈ [0, '%). The latter implies 

that Å(!) = 0		∀		! ∈ [0, '%)  by Equation (27). From the aforementioned hypothesis, the 

optimal payment function is continuous for all ! in the set [0, '̅]. Hence, Å(!) is thus also 

continuous for all ! values (Caputo, 2005, p.105). Consequently, Å(!) is continuous at the 

switching value ! = '% and thus we have that  
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 Å('%) = −R3[P + S;('%) − (1 − N)M]4('%) − <Y4('%) = 0. (34) 

 

Solving for < from the above equation we get the following  

 < = −
S0[TAE0(8%))($)U)V]

Q
. (35) 

Hence,  

 Ä(!) = −
S0[TAE0(8%))($)U)V]

Q
		∀	!	 ∈ [0, '̅], (36) 

and  

 Å(!) = É

0										∀!	 ∈ 	 [0, '%),

4(!)[R3[P + S;('%) − (1 − N)M] − R
3[P + S;(!)

−(1 − N)M]]										∀!	 ∈ 	 ['%, '̅].
 (37) 

 

Consequently, it should be noted that on the interval ['%, '̅], Å(!) is only equal to zero at an 

instant, that is at ! = '%. Therefore, substituting the value for Å(!), and that of Ä(!) from 

Equation (36) into Equation (30) yields the optimal solution in Equation (10). Furthermore, from 

Equation (10), it is clear that ℎ(!) = 0		∀!	 ∈ 	 ['%, '̅], and ℎ(!) is continuous for all !  as 

asserted.  

 

Proof of Proposition (2.)  

 

 M∗ = Y ∫
8̅

:
ℎ∗(!)4(!)X! (38) 

 	= Y[∫
8%
:

S>('% − !)4(!)X! + ∫
8̅

8%
0 ⋅ 4(!)X!] (39) 

 	= SY>[∫
8%
:

'%4(!)X! − ∫
8%
:

!4(!)X!] (40) 

 	= SY>['%[e('%) − e(0)] − Q[![:,8%)]] (41) 

 	= SY>['%e('%) − Q[![:,8%)]]. (42) 

 

 We know that ∫
8̅

8%
0 ⋅ 4(!)X! = 0 ⋅ ∫

8̅

8%
4(!)X! = 0, and e(0) = 0. Hence, proved.  
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Proof of Proposition (3.)  

 

The hamiltonian function of the system (13), (14), (15) is given as follows  

 ℋ(\, ℎ? , Ä? , Å?) = R[P + S∑? ;(!?) + ∑? ℎ(!?) − (1 − N)M]4(!?) 

 	+Ä?Y∑? ℎ(!?)4(!?) + Å? ∑? ℎ(!?). (43) 

 

Hence, the first order necessary conditions are as follows  

 ℋ6(\, ℎ? , Ä? , Å?) = R[P + S∑? ;(!?) + ∑? ℎ(!?) − (1 − N)M]&4(!?) 

 	+Ä?&Y4(!?) + &Å? = 0. (44) 

   

 ℋO&(\, ℎ? , Ä? , Å?) = ∑? ℎ(!?) ≥ 0, Å? ≥ 0, Å? ∑? ℎ(!?) = 0. (45) 

  

 Ä̇ = 0. (46) 

From Equation (44), we obtain the value for ∑? ℎ(!?) as follows.  

 ∑? ℎ(!?) = R3
#"
[−

P&Q&R((&)A&O&
&R((&)

] + (1 − N)M − S∑? ;(!?) − P. (47) 

From Equation (46), we determine the value for the costate variable as follows  

 ∫
MP((&)
M(&

	X!? = ∫ 0	X!? ⟹ Ä(!?) = <? . (48) 

Where <?  is a constant of integration. Therefore, Ä(!?) is a constant. The costate variable 

represents the farmer’s shadow cost of acquiring the insurance contract. The higher the 

protection being offered by the contract, the higher the premium. Hence, the shadow cost is the 

cost to the farmer for an additional unit of insurance protection. Intuitively, the payment 

∑? ℎ(!?) should be equal to zero when all the !?  values are in the set ['%? , '̅?] contained in 

the support of each index !?. The latter implies that the farmer receives no payment since the 

observed total rainfall in each growth stage was higher or equal to the respective threshold '%?. 

Likewise, for any (for at least one index of the indices) !? ∈ [0, '%?), the payment ∑? ℎ(!?) 

should be strictly positive. The latter implies that the farmer receives a payment since one of the 

observed growth stages’indices is strictly less than that growth stage’s threshold. Thus, there was 

a low rainfall in that growth stage compared to its threshold. To sum up from the aforementioned 
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observations, a reasonable structure of the optimal payment function should be ∑? ℎ(!?) =

0		∀		!? ∈ ['%? , '̅?], and ∑? ℎ(!?) > 0		4ÑU	-W;		!? ∈ [0, '%?). As a result, for all !? ∈ 		 ['%? , '̅?], 

we have that  

 ∑? ℎ(!?) = 0 

   

 ⟹R3
#"
[−

P&Q&R((&)A&O&
&R((&)

] + (1 − N)M − S∑? ;(!?) − P = 0. (49) 

Since Ä? = <?, we then solve for Å?  from Equation (49) to get  

 Å(!?) = −R3[P + S∑? ;(!?) − (1 − N)M]4(!?) − <?Y4(!?), ∀	!? 	 ∈ ['%? , '̅?]. (50) 

 

To find the value for <?, recall the second case when ∑? ℎ(!?) > 0 for any (for at leat one index 

of the indices) !? ∈ [0, '%?) . The latter implies that Å(!?) = 0		4ÑU	-W;		!? ∈ [0, '%?)  by 

Equation (45). From the aforementioned hypothesis, the optimal payment function is continuous 

for all !?  in the set [0, '̅? ]. Hence, Å(!?) is thus also continuous for all !?  values (Caputo, 

2005, p.105). Consequently, Å(!?) is continuous at the switching value !? = '%?  and thus we 

have that  

 Å('%?) = −R3[P + S∑? ;(!%?) − (1 − N)M]4('%?) − <?Y4('%?) = 0. (51) 

Solving for <?  from the above equation we get the following  

 <? = −
S0[TAE∑&0((%&))($)U)V]

Q
. (52) 

Hence,  

 Ä(!?) = −
S0[TAE∑&0((%&))($)U)V]

Q
		∀	!? 	 ∈ [0, '̅?], (53) 

and  

 Å(!?) = É

0										∀!? 	 ∈ 	 [0, '%?),

4(!?)[R
3[P + S∑? ;(!%?) − (1 − N)M]

−R3[P + S∑? ;(!?) − (1 − N)M]]										∀!? 	 ∈ 	 ['%? , '̅?].
 (54) 

 

Therefore, substituting the value for Å(!?), and that of Ä(!?) from Equation (53) into Equation 

(47) yields the optimal solution in Equation (16). Furthermore, from Equation (16), it is clear that 

∑? ℎ(!?) = 0		∀!? 	 ∈ 	 ['%? , '̅?], and ∑? ℎ(!?) is continuous for all !?  as asserted.  


