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Summary: 
 Drought severity is expected to increase in South Africa in the coming years, 
given the deteriorating effects exerted by climate change on rainfall patterns and global 
temperature and evaporation. One common mitigation strategy adopted by households 
is to promote water demand management initiatives to reduce water consumption 
volume and complement the existing water supply management approaches being 
implemented by suppliers. This paper contributes to the discussion on adaptation 
strategies by investigating the determinants of adopting water-saving technologies 
through empirical evidence from urban Cape Town, South Africa. We estimate the 
attribute levels and household characteristics that influence the adoption of several 
water-saving technologies, including greywater reuse technology, rainwater collection 
systems, installment of dual-flush cisterns, and water-efficient showerheads. We use a 
choice modelling framework to investigate heterogeneity among households based on 
their preferences for individual or groups of characteristics embedded in each water-
saving technology. A pilot survey (n=72) was first conducted using an orthogonal design 
method in order to obtain precise parameter priors for the D-efficient design framework 
used in our main survey (n=303) estimation. Random Parameter Logit (RPL) is 
compared with the Nested Logit (NL) model to estimate marginal willingness to pay 
(MWTP) for the adoption of water-saving technology. Our results show that 
households are sensitive to the reliability, lifespan, and quantity of water saved by the 
technologies when explaining the attributes that determine adoption. Alongside other 
policy interventions, our results also show that initiatives that support the installation 
of technologies with fewer complexities are favourable in predicting positive household 
response to adoption. 
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Abstract - Drought severity is expected to increase in South Africa in the coming years, given 

the deteriorating effects exerted by climate change on rainfall patterns and global temperature 

and evaporation. One common mitigation strategy adopted by households is to promote water 

demand management initiatives to reduce water consumption volume and complement the 

existing water supply management approaches being implemented by suppliers. This paper 

contributes to the discussion on adaptation strategies by investigating the determinants of 

adopting water-saving technologies through empirical evidence from urban Cape Town, South 

Africa. We estimate the attribute levels and household characteristics that influence the 

adoption of several water-saving technologies, including greywater reuse technology, 

rainwater collection systems, installment of dual-flush cisterns, and water-efficient 

showerheads. We use a choice modelling framework to investigate heterogeneity among 

households based on their preferences for individual or groups of characteristics embedded in 

each water-saving technology. A pilot survey (n=72) was first conducted using an orthogonal 

design method in order to obtain precise parameter priors for the D-efficient design framework 

used in our main survey (n=303) estimation. Random Parameter Logit (RPL) is compared with 

the Nested Logit (NL) model to estimate marginal willingness to pay (MWTP) for the adoption 

of water-saving technology. Our results show that households are sensitive to the reliability, 

lifespan, and quantity of water saved by the technologies when explaining the attributes that 

determine adoption. Alongside other policy interventions, our results also show that initiatives 

that support the installation of technologies with fewer complexities are favourable in 

predicting positive household response to adoption. 

Keywords: water conservation, water economics, discrete choice modeling, South Africa  

JEL Classification O33; Q25; Q55; Q58; D04  

1 Introduction 

Water management approaches that advocate for sustainability in water use have often been 

focused on using extreme measures such as tariff changes and implementation of strict water 

restriction programmes on residential water demand (Enqvist & Ziervogel, 2019). However, 

despite these measures, many empirical evidence has shown that an efficient water pricing 
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structure is difficult to implement, especially in countries with severe water scarcity.  In many 

instances, relatively high water prices are paid by poorer households compared to higher-

income users who often pay low water prices relative to their consumption patterns (De Oliver, 

1999). Also, implementation of strict water restriction programmes are often limited by 

political will (Cooper et. al., 2011; Stoutenborough & Vedlitz, 2014), and they are difficult to 

enforce, particularly in countries where institutions have limited capacity to monitor the 

policies adopted to support water use efficiency (Sisser et al., 2016). Studies showed that 

heavy-handed restrictions are unlikely to persist over time when drought severity decreases 

and consumption habits resume back to normality (Knickenmeyer & Taxin, 2018; Meissner et. 

al., 2018). Therefore, promoting sustainable water resources management approaches that 

address water scarcity requires adopting and implementing more stable and long-term driven 

strategies that offset the limitations associated with drastic water pricing and restriction 

programmes. Efficient demand management measures may also focus on effective non-price 

strategies such as adopting water-saving technologies within households. For instance, an 

earlier study by Gilg & Barr (2006) showed that water demand management can be better 

understood by investigating the factors that drive water-saving within households. A more 

recent study conducted by Fielding et. al., (2012) further iterates the need to understand the 

determinants of the adoption of water-saving technologies. Yet, no consensus has emerged 

regarding understanding the factors that drive water-saving technologies in urban households. 

Adopting water-saving technologies is an effective and sustainable non-price demand 

management measure that can reduce water scarcity  (Fuenfschilling & Truffer, 2016; Ward et 

al., 2012). A growing literature on urban water management reveals the importance of water-

saving technologies in reducing overall water demand (Booysen, Visser, & Burger, 2019; Wu, 

Zhang, & Gao, 2018). This is achieved by analyzing the factors that drive the adoption of water-

saving technologies by urban dwellers in South Africa. We target double flush toilets, low-flow 

showerheads, rainwater collection, and greywater treatment technologies. A typical South 

African middle-income household of four spends 25% of their water use in flushing the toilet, 

25% on garden and outdoor activities, 24% on bathing or showering, 13% on laundry, 11% in 

the kitchen, and 2% on other activities (Price, Ross, Rabe, & Mander, 2009). Adopting double 

flush technology is expected to reduce as much as 75% water use in flushing (Murwirapachena 

& Dikgang, 2019). Greywater constitutes about 50% of the total wastewater generated within 
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a household and its reuse may lead to significant reductions in household water demand 

(Carden et al., 2007; Roesner et al., 2006). 

This paper investigates the factors that drive the adoption of water-saving technologies in Cape 

Town. We use a choice modelling framework that compares various utility functions associated 

with different alternatives that represent payoffs associated with adopting water-saving 

technologies.  

2 Brief Related Literature  

The literature has identified several factors that drive household water demand and 

consumption patterns. These factors include household socio-demographic characteristics 

(Aitken et al., 1994; Gregory & Di Leo, 2003), behavioural change towards water usage 

(Gregory & Di Leo, 2003; Richter & Stamminger, 2012), attitudes and values towards water 

conservation practices (Syme et al., 2004; Willis et al., 2011), water restrictions programmes 

(De Oliver, 1999; Kenney, Klein, & Clark, 2004) and pricing of water (Kenney et al., 2008; 

Renwick & Archibald, 1998). Nauges & Whittington (2010) provide a comprehensive overview 

of the factors that influence residential water demand in the developing world.  

Very few studies looked at the behavioural responses associated with the adoption of water-

saving technologies by urban dwellers. This is because most of the water consumption occurs 

in the agricultural sector, and water-saving is mainly expected to take place at farm level. 

However, the growing urbanization in urban cities is not only expected to increase the volume 

of water use for drinking and residential consumption purposes but also water use in 

agriculture and manufacturing production for a growing population. More people will require 

more food and more manufacturing products, which will require more inputs used in the 

production process, including water.  Despite this, few studies have looked at the determinants 

of adoption of residential water-saving technologies (Campbell, Johnson, & Larson, 2004; 

Millock & Nauges, 2010; Renwick & Archibald, 1998; Thiam, Dinar, & Ntuli, 2020). Campbell et 

al. (2004) looked at the impacts of price and non-price water demand-side management on 

the adoption of water-saving equipment in Arizona, USA. They collected data from 19,000 

households over six years and found that changes in water pricing spur adoption of water-

conservation measures. Millock & Nauges (2010) studied the factors that drive adoption of 

Waterwise washing machines, low-volume flush toilets, restrictor taps in water supply and 
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rainwater collector tanks in 10 OECD countries in Europe. They found that household size, 

water price and whether households own property positively influence the adoption of water-

saving technologies. Thiam et al. (2020) and  Renwick & Archibald (1998) investigated the 

factors that drive the adoption of water-saving technologies in residential households in South 

Africa and California, respectively. Their results found that household size, income and 

education positively influence the adoption of water-saving technologies. This present paper 

contributes to the discussion on urban water management by investigating the factors that 

drive the adoption of water-saving technologies through empirical evidence from South Africa. 

We build on Thiam et al. (2020) and Campbell et al. (2004) and look at the behavioural 

responses associated with adoption of water-saving technologies in residential households. 

This research provides an improved understanding of the challenges associated with the 

adoption of water-saving behaviours in urban areas that experience water scarcity. 

3 Theory and Methods 

3.1 The Choice Experiment Method and the Econometric Model 

Developed from the random utility theory, choice experiments assume that individuals are 

rational decision-makers who choose the most preferred (utility-maximising) option when 

faced with various possible set of options (McFadden, 1973; Howard, 1977). According to 

McFadden (1973), these rational individuals make choices based on the characteristics of the 

good, along with a random component. The random component could emerge from the 

uniqueness in the individuals' preferences, or due to researchers having in-complete 

information about the individual observed (Ben-Akiva & Lerman, 1985). Where a household 

head !’s utility, ", of a water-saving technology # is assumed to consist of a deterministic and 

a stochastic element: 

"$% = 	($%)*%, ,%, -. +	0$%	                                      (1) 

Where ( depends on the characteristics of the technology *%, individual specific characteristics 

,%, and the price - and 0$%	is the unobserved random component that is IID extreme value type 

12 and consists of factors affecting the choice but are not observable to the researcher 

 
2 Historically,  EV1  distribution  has  been  referred  to  by  a  number  of  names,  including Weibull, Gumbel 
and double-exponential. 
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(Louviere et al., 2000). The theory states that an individual will choose an alternative 1 from a 

finite set of alternatives 2, given the indirect utility of 1 is greater than the indirect utility of 

any other alternative, #. This means that 

"$3 > "$% 	⟹ ($3 +	0$3 	> 	($% +	0$%			∀	# ≠ 1; #, 1 ∈ 2	)   (2) 

The probability that an individual chooses alternative 1 is the same as the probability that the 

utility of alternative 1 is greater than the utility of any other alternative of the choice set 

(Adamowicz, 2004). In our case, the utility definition of the choice-task among five alternatives, 

one of which is the status quo option, is 

"3$;

⎩
⎪
⎨

⎪
⎧(

)@A2, *3$;,	B$	, C$	. + 03$;,				if	1 = 1;

()@A2, *3$;,	B$	, C$	. + 03$;,				if	1 = 2;

()@A2, *3$;,	B$	, C$	. + 03$;,				if	1 = 3;

()@A2, *3$;,	B$	, C$	. + 03$;,				if	1 = 4;
03$;,																													if	1 = status	quo

                                  (3) 

where ! denotes the individual, 1 the alternative, and P the choice-occasion. (3$;, the indirect 

utility is a function of a vector of variables explaining choice *3$; and chosen vectors of 

individual-specific parameters, 	B$  . 	B$  is assumed to take on a multivariate normal distribution 

where the off-diagonal elements of the covariance matrix are zero. C$	is an error component 

associated with the two non-status quo choices and is assumed to be normally distributed 

white noise,	C$	 ∼ R	(0, σV). This error component reflects that there may be additional 

variance related to the four non-status quo alternatives, because it is cognitively more 

demanding for respondents to evaluate four complex alternatives in each choice set as 

opposed to the status quo (Beharry-Borg et. al., 2009; Hensher et al., 2015; Morse-Jones et al., 

2012). Lastly, 03$;, is a random error term that is iid extreme value type 1. 

In order to calculate the choice probability for a given choice-occasion P, we use a 

random we use a random parameter logit model (RPL) and assume that individuals seek to 

maximise utility. Conditional on the individual-specific parameters,		B$, and error components, 

C$	, the probability that respondent ! chooses a specific alternative 1 in choice-task P (of the 

sequence P = 1, . . . , R) from the five alternatives ( j = 1, . . . , J ) is logit: 
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Pr(1!P|	B$, C$	) =
exp(B$

]^3$; + C$)

∑ exp)B$
]
%̂$; + C$.

`
%

																													(3)	 

If we assume independence over choice-tasks made by the same individual, the joint 

probability of an individual making a sequence of choices is the product of the, in our case, ten 

probabilities. The probability of choice unconditional on the error component is obtained by 

integrating over the error-component space. Following this, the marginal probability of choice 

can be derived from integrating over the distribution functions for the random 	Ba parameters 

(Beharry-Borg et al., 2009; Train et al., 1987). Following the above, the probability of choosing 

alternative 1 becomes: 

Pr(1!P) = ∫c∏ e
fgh)ij

klmjnopj.

∑ fgh)ij
klqjnopj.

r
q

st
;uv w x(B)y                   (4) 

Where x(B) represents the distribution function for B, with mean z and variance {. The 

model is not sensitive to the independence of irrelevant alternatives (IIA) condition and, 

furthermore, it allows for individual-specific B estimates based on specified distributions (Train 

et al., 1998). This means that the model utilises the information that each respondent has 

answered several choice sets, by making taste parameters constant over choices within 

individuals but not between individuals. Including this information is likely to enhance the 

explanatory power of the model. Even though the integral in (4) does not have a closed-form, 

the choice probability in the RPL model can be estimated through simulation. The unknown 

parameters |, such as the mean and variance of the random coefficient distribution, can be 

estimated by maximizing the simulated log-likelihood function. For a given mean and variance 

of a random coefficient distribution, the simulated probability 	}~3$;	is strictly positive and twice 

differentiable with respective to the unknown parameters |. Therefore, the simulated log-

likelihood function log-likelihood is: 

�ÄÅ�(|) = 	ÇÇy3$;

`

3uv

ln	}~3$;																																		(5)

Ü

$uv

 

Where y3$;=1 if individual ! chooses alternative 1 and zero otherwise. Each individual is 

assumed to make choices independently and only make the choice once. The value of 

estimates that maximizes the SLL is called the maximum simulated likelihood (MSL) estimate. 
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To derive the mathematical form of the NL model, we consider a two-level NL structure3 in 

which the total choice sets are partitioned in á nonoverlapping subsets (nests) àv, . . . , àâ. 

The utility of alternative 1 in nest àâ is still "$% = 	($% +	0$%, again with ($%  the observed part 

of the utility. The NL model is obtained by assuming that the vector of disturbances has a 

cumulative distribution of a GEV type distribution: 

 

0*ä	ã− Ç çÇ 0ap$%/èê

3∈ëê

í

èêâ

âuv

ì																															(6) 

The parameter èâ is a measure of the degree of independence in the random part of the utility 

among the alternatives in the nest á. The distribution for the unobserved components 

proceed the choice probability for alternative # in nest àâ: 

}$% =
0ïjq/èê)∑ 0ïjm/èê3∈ëê .

∑ )∑ 0ïjm/èñ3∈ëñ .
èñâ

óuv

èêav

																									(7) 

If  á = ô, meaning two alternatives are in the same nest, the factors in parentheses cancel each 

other out and it shows that IIA holds. Train (2003) shows that some other form of IIA holds 

across nests, such as independence from irrelevant nests (IIN). Therefore, in a NL model, IIA 

holds for alternatives within each nest and IIN holds over alternatives in different nests. The 

observed component of the utility function can be distinct in two parts: "$% = 	{$â + ö$% +

	0$%. Here {$â is the part that is constant for all alternatives within a nest. This variable depends 

only on variables that describe next á, therefore they differ over the nests but not over the 

alternatives within a nest. ö$%  is simply define as ($% −	{$â and depends on variables that 

describe alternative #, so they vary over alternatives within next á. The probability that an 

alternative is chosen ca be written as the product of the probability that a certain nest is chosen 

multiplied with the probability that an alternative within that nest is chosen: 

}$% = 	}$%\ëê ∙ 		}$ëê     (8) 

The conditional probability }$%\ëê  can be given as: 

 
3 The extension of a two-level NL structure to three-level or four-level ones can be done with the same 
methodology used in this paper. 
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}$%\ëê =
0ùjq/	èê

∑ 0ùjm/èê3∈ëê

																																								(9) 

                                     

and 

}$ëê = 	
0üjêo	èê†jê

∑ 0üjño	èñ†jñâ
óuv

																						(10) 

Where 

†$â = ln Ç 0ùjq/èê

3∈ëê

																																		(11) 

 

These expressions are derived from the choice probabilities stated earlier. Train (2003) gives 

the derivation by algebraic rearrangement. It is customary to refer to the marginal probability 

as the upper model and to the conditional probability as the lower model. The quantity †$â 

links the lower and upper model by transferring information from the lower model to the upper 

model ( Ben-Akiva and Lerman, 1985). This term is the logarithm of the denominator of the 

lower model, which means that èâ†$â is the expected utility that the decision maker obtains 

from the choice among the alternatives in nest àâ.  

The parameter of the NL can be estimated by standard maximum likelihood techniques: 

�	 = 	° °)}$%\ëê	}$ëê.
¢jq																	(12)

%∈ëê

Ü

$uv

 

Thus, the log likelihood becomes: 

log� = 	Ç Ç §$%
%∈ëê

ln}$%\ëê +Ç Ç §$â
â∈•

ln

Ü

$uv

Ü

$uv

}$ëê												(13) 

We estimate the marginal effects of each attribute in order for the results to be of more policy 

relevance. Additionally, understanding the marginal effects allows us to test for variations in 

welfare measures by examining the marginal willingness to pay (MWTP) estimates. MWTP 

estimates show the marginal rate of substitution (MRS) between each attribute and the 

monetary attribute; this is an important output of choice models, as it gives average estimates 

of what respondents are prepared to pay for or against each attribute (Hensher et al., 2015).  

Equation (14) below shows the expression of the MWTP. 
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{¶}l = 	
∆l

∆®
= 	−

©™jq
©´q
©™jq
©¨j

= −
iq
≠
= Æ{¶}                                         (14) 

3.2 Introduction to Discrete Choice Experiment 

The experimental design's quality drives the precision and statistical significance of parameter 

estimates when performing an empirical analysis. This is because there exists a relationship 

between the statistical properties of stated choice experiments and the econometric models 

used to estimate the experimental data (Butkeviciute, 2017). There are different choice 

experiment design types that have been adopted by researchers, including full factorial, 

fractional factorial, orthogonal and efficient designs (Gao et al., 2010; Kløjgaard et al., 2012; 

Ryan et al., 2008; Street et al., 2019). The designs primarily differ in the assumptions imposed, 

specifically on the type of correlation structure between attributes in the design matrix.  

In this paper we focus on the orthogonal and D-efficient designs. The orthogonality property 

has often been considered the traditional and state-of-practice approach. A design is said to 

be orthogonal "if it satisfies attribute level balance and all parameters are independently 

estimable."4 Orthogonal designs are generated by imposing the property of orthogonality on 

the attributes contained in the columns of the design matrix  (J. M. Rose & Bliemer, 2009). On 

the other hand, efficient designs are derived based on the statistical properties of discrete 

choice models. Efficiency based designs reduce the sample size requirement needed to obtain 

robust parameter estimates. More specifically, D-efficient designs have been mostly relied on 

by researchers because it aims to minimize the standard errors of the parameters at design 

stages and improve the quality of the results obtained when estimating parameter values. 

(Alpízar et al., 2001; Bliemer et al., 2010; Dardanoni & Guerriero, 2021; Lai & Yue, 2020; Rose 

& Bliemer, 2009). However, efficient designs are only efficient if prior parameters are known. 

If incorrect prior parameters are used, efficient designs become inefficient (Bliemer et al., 

2010). To address this problem, the literature recommends drawing prior parameters from i) 

the literature ii) pilot study iii) focus groups or iv) expert judgement (Rose, 2012). The 

 
4 Ngene Manual, p. 64, ChoiceMetrics, 2012 
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experiment designs discussed in this paper are applied using the Ngene5 software in the 

context of the pilot and final survey designs. 

3.3 Design of the choice experiment 

In this study, the water-saving technologies we considered are i) greywater reuse ii) rainwater 

collection iii) efficient showerheads, and iv) dual flush cistern. Greywater constitutes about 

50% (about 68litres/capital/day) of the total wastewater generated within a household in Cape 

Town (Carden et al., 2007; Roesner et al., 2006). An integrated domestic rainwater harvesting 

involves collecting, storing, and channeling rainwater to the toilet for flushing and gardening 

irrigation outlets instead of using potable water. Replacing a 12L cistern with a 3L dual cistern 

saves about 75% of water (Jansen & Schulz, 2006; Murwirapachena & Dikgang, 2019; Zaied, 

2018) in SA households.  

Table 1 shows the selected attributes of each water-saving technology, and it describes their 

associated levels. Previous studies highlight "Reliability of Access" as one of the major factors 

that influence the adoption of water-saving technologies (Kaur & Rampersad, 2018; 

Zaunbrecher, Kowalewski & Ziefle, 2014). Households are more willing to adopt new 

technology that is perceived to be reliable when water can be accessed immediately it is 

needed. In our case, this refers to how dependable and reliable water supply from a given 

technology is. It considers the unpredictable nature of rainfall and the predictable availability 

of wastewater and cistern water within the household. The two levels of this attribute are: 

Reliable Access and Unreliable Access. The second attribute is "Perceived Health Risk". The 

level of health risk associated with a technology could largely influence its adoption rate. This 

risk can be present in the form of a foul smell, degree of water contamination and the 

possibility of diseases and infection to the household. This attribute has two levels: Health risk 

and No health risk. The third attribute identified in this study is the "Complexity of technology". 

This refers to the ease of use of a given technology and the expertise involved in installing and 

operating it. The ease of use of technology could have a huge influence on respondent's 

adoption rate (Makki & Mosly, 2020; Sharma, Begbie, & Gardner, 2015). The two levels of the 

attribute are; easy (when no extra training is required before usage of the technology) and 

 
5 Ngene is a comprehensive software for designing choice experiments. It is designed to be the single source of 
stated choice experimental designs (ChoiceMetrics, 2012). 
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hard (when very sophisticated and intensive training is needed before installation of the 

technology). The fourth attribute is the "Ease of Maintenance", this differs from the above 

third attribute mainly because maintenance and services are done post technology installation. 

The relevance of this attribute can be distinguished based on the needed frequency of 

maintenance of technology that will ensure optimal performance, as well as the expertise 

required for such maintenance. It also captures both the ease of acquisition of the 

maintenance skills and the intensity of training needed to service the technology after 

installation. The identified attribute levels are: Difficult and Easy. Investing in water-efficient 

technologies is expected to reduce the household's monthly water bill by reducing the quantity 

of water demanded from the municipality. Thus, the fifth attribute considered in this study is 

"Water Quantity Saved". The average urban household of 5 people uses 640 liters of water per 

day in South Africa (COCT, 2013). Technologies that reduce the quantity of water used for 

specific household activities, store rainwater and make wastewater available for reuse will 

ultimately reduce the total quantity of water demanded by this household. The attribute levels 

are; above 25% (when technology saves up to 25% of average household water demand) and 

below 25% (when technology saves less than 25% of average household demand. The sixth 

attribute identified is the "Costs of Technology", which can also influence adoption decisions 

within households. The adoption of technologies with high cost of purchase and installation 

could be limited in low-income households (Kaur & Rampersad, 2018). Four levels of costs 

were examined for this attribute. Finally, previous studies report the "lifespan of a technology" 

as an important factor that influences technology adoption (Heinz, 2013; Peek et al., 2016). In 

choosing water-saving technologies, a household is more willing to adopt technologies that 

have a longer lifespan. The two levels of the attribute are "less than 5 years" and "more than 

10 years". There are 256 possible combinations of the attributes and their levels as shown in 

Table 1, with six attributes varying across two levels each and one attribute varying across four 

levels (26X 41).  
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Table 1: Definition of Attributes and their Level 
Attributes  Definition  Levels of attributes 
Reliability of Access This indicates how dependable and reliable 

water supply from the technology is. 
Reliable Access: Water can be accessed from selected technology 
every time it is needed. 
Unreliable Access: Access to water from technology may be seasonal. 

Perceived Health Risk This refers to the households' perception of 
possible health-related risks, discomfort or 
stress associated with the use of a technology 

High risk: Selected technology uses chemicals products in water 
treatment and may emit foul smells. 
No health risk: No chemical products are used in technology and 
there is no emission of foul smell. 

Complexity of Technology This refers to the ease of use of technology 
and the expertise involved in the installation 
and day-to-day operation. It focuses on 
whether technology can be operated with no 
prior training or not. 

Hard: When high-level expertise and training is needed for the 
installation and operation of the technology. 
Easy: When technology can be operated with no prior training. 

Ease of Maintenance  This captures whether intensive training is 
needed for the maintenance or servicing of 
technology to ensure optimal performance. It 
also captures the frequency at which 
maintenance or servicing is needed. 

Difficult: When intensive training is needed for the maintenance of 
technology and maintenance is required at least once a month. 
 
Easy: When maintenance is easy and rarely necessary 

 Water Quantity Saved This refers to the percentage of water saved in 
a household after technology adoption.  

Above 25%: If technology saves more than 25% of the average 
water demand of household before installation. 
Below 25%: If the presence of technology does not reduce household 
water demand by up to 25%. 

Costs of Technology Cost of purchasing and installing the technology R5,000; R10,000; R15,000; R20,000 
Lifespan of the technology This refers to the average number of years the 

technology can be used optimally without the 
need for replacement. 

Less than 5 years 
 
More than 10 years 
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4 Survey Design and Data Collection 

4.1 Pilot and Main Survey Design 

The pilot survey's aim is not to obtain precise parameter estimates for the D-efficient design. 

Instead, the goal is to roughly estimate the weight individuals place on water-saving 

technologies' different attributes. To minimize bias and elicit the weight households place on 

the attributes that form of prior values required to generate the final design of the survey, an 

orthogonal design of 36 alternative profiles made up of six blocks was created using Ngene 

from the full set of possible combinations. The number of alternatives is informed by the 

literature review and is based on the frequently used number of blocks and choice sets for a 

design similar to the one being considered in this paper. The software produced a design with 

one status quo and four non-status quo alternatives per choice set, and six choice sets 

arranged in six survey blocks/cards. The status quo represents the household's current 

situation, i.e., what they are doing now, whether they have a technology installed or not. Each 

respondent was randomly assigned six choice sets which had been prepopulated in six 

different questionnaire versions. In addition, each pilot survey questionnaire also included 

sections on socioeconomic characteristics of households. We carried out the pilot survey in 

November 2020 and obtained responses from 72 households. Each respondent evaluated 5 

alternatives throughout 6 survey questions which generated 1040 observations in total. The 

main survey design generation process took place over many days to allow Ngene to evaluate 

as many potential designs as possible and locate the smallest comparable D-error for the final 

questionnaire. 

The prior parameter estimates from the pilot orthogonal survey were then used to construct 

the main survey. After allowing Ngene to run the D-efficient design syntax, we manually saved 

designs with the lowest Db-errors. A design of eight distinct choice sets was evaluated using 

Ngene, from the full set of all possible combinations. Like the pilot design, the software also 

produced a design with one status quo and four non-status quo alternatives per choice set. In 

addition to the section on households' socioeconomic characteristics, the questionnaire also 

recorded information on household water consumption and water-saving strategies adopted 

within households. The final survey instrument was administered to 303 households within the 

City of Cape Town.  
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5 Results 

Table 2 shows the descriptive statistics of the respondents for both the pilot and main surveys. 

During data inputting for the pilot survey, data was captured such that each individual 

household head was entered 30 times to include the choices they made for five options and 

six different choice sets. In the main survey data was captured such that each individual was 

entered 40 times to include the choices they made for five options and eight different choice 

sets. Responders averaged 54 years old in the pilot and 50 years of age in the main survey. The 

average household size is 5 in the pilot survey while it is 4 in the main survey. The gender of 

the household heads showed minor differences in both surveys, from 82% male respondents 

in the pilot survey to 83% in the main survey. More results of our main survey showed that 

66% of the respondents are employed and about 16% of the respondents have total yearly 

household income of above one million Rand. The average tap water consumption per month 

is 6262L while the mean monthly water bill is R367.  

Table 2: Descriptive Statistics 
 

Mean (Std. Dev.) 
Variables Pilot Survey (n=72) Main Survey (n=303) 

Age (Years) 54.24 (9.61) 49.66 (15.61) 
Gender (1 =male, 0 = female) 0.82 (0.39) 0.83 (0.37) 
Household Size 4.58 (3.27) 3.70 (1.47) 
Number of employed household member 2.15 (1.39) 1.83 (1.32) 
Educational Level (1=Primary education, 
2=Secondary school, 3=Some technical 
certificate/diploma, 4=Bachelor’s degree, 
5=Honor’s degree, 6=Professional/Master’s 
degree, 7=Doctorate degree) 

4.22 (1.69) 3.55 (1.53) 

Total Annual Household Income  
(1=R50,000 or below,  
2=R50,001 to R100,000,  
3=R100,000 to R150,000 
4=R150,000 to R200,000 
5=200,000 to R350,000 
6=R350,000 to R500,000 
7=R500,000 to R750,000 
8=R750,000 to R1,000,000 
9=R1,000,000 to R2,000,000 
10=Above R2,000,000) 

7.86 (2.71) 5.41 (2.92) 
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5.1 Parameter Priors 

The pilot coefficient estimates were estimated using Stata and used in the main survey design 

as parameter priors. These priors are outlined in Table 3 along with the assumed standard 

deviations. The population standard deviations of the respective attributes included in the 

design were approximated using the values of the coefficient estimates' standard errors. In our 

model, each parameter prior !"# is assumed to follow a normal distribution with mean $# and 

standard deviation %#. The population standard deviation Table 3 have been approximated 

using the standard errors of the mean coefficient estimates from the pilot study (Greene, 

2008). In order to obtain a rough approximation of the population standard deviation % we use 

the relationship between sample size, the standard error of the parameter estimate and the 

population standard deviation &. (.)* = ,
√.

6. This method was followed instead of randomly 

assigning values to the standard deviations. 

                 Table 3: Main survey parameter priors 
Attribute # Assumed Priors 

!"#~1($#, %#) 
Reliability of access 1(0.38, 1.10) 

Perceived Health Risk 1(0.57, 1.10) 
Complexity of Technology 1(-0.12, 1.02) 
Ease of Maintenance 1(0.90, (1.02) 
Water Quantity Saved 1(-0.61, 1.10) 
Cost of Technology 1(-8e4, 1e4) 
Lifespan of Technology 1(-0.17, 1.10) 

 

5.2 RPL and Nested Logit Model 

To test all attributes for presence of preference heterogeneity, RPL model assumes that all the 

variable coefficients are distributed randomly following a normal distribution. In the RPL model 

estimation, not all the attributes were found to be significant. As shown in Table 4, only four 

attributes in the base RPL model are significant. Access to technology and lifespan of the 

technology shows statistical significance at 5% while the cost of the technology is significant at 

1%. The estimates show that the cost of water-saving technologies, their access, lifespan, and 

 
6 This method does not present a precise and unbiased estimate of the population standard deviation but 
helps us to avoid assigning random prior values using of sample size of 72 in the pilot study. 
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the quantity of water they save are important determinants technology adoption within 

households. The interactions of the Age and Health Risk, Gender and Reliability, Household 

income and Health Risk, Income and water quantity saved, Household size and Lifespan, 

Education and Lifespan and Waterbill and Reliability of technology all show statistical 

significance in the RPL model. Table 4 also includes columns for z-statistics which indicate the 

relative explanatory power of the various attributes in respondents' choice of water-saving 

technology. Under the base RPL model the attributes with the largest z-values are the quantity 

of water saved and lifespan of technology. 

The nest structure of our nested logit model is shown in figure.  We generated a categorical 

variable that identifies the first-level set of alternatives based on the cost implication of our 

five choice alternatives: (i) High-Cost technologies, (ii) Minimal cost technologies and (iii) no 

cost alternative. Figure 1 shows the nesting structure in which rainwater collection and 

greywater treatment technologies are more similar to each other than they are to water-

efficient showerhead and double-flush toilet. The base NL results in table 4 shows that all 

attributes are statistically significant except the perceived health risk associated with water-

saving technologies. The z-values of the NL interactions and RPL interactions show very similar 

results to each other. 

 

 

 

 

 

Figure 1: Two-Level Nest Structure 

Double-flush Toilet Water-efficient 
Showerhead 

Status Quo/ No 
Technology 

Water-Saving Technology 

High-Cost 
 

No Cost 
 Minimal Cost 

 

Rainwater Collection 
Technology 

Greywater Treatment 
Technology 
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Table 4: Random Parameter Logit and Nested Logit Model 
 Base RPL RPL Interaction         Base NL NL Interaction 

Attributes Coefficient 
(SE) 

|" − $%&%| Coefficient 
(SE) 

|" − $%&%| Coefficient  
(SE) 

|" − $%&%| Coefficient 
(SE) 

|" − $%&%| 

Reliability of Access -0.293** 
(0.135) 

-2.16 0.369 
(0.406) 

0.91 -0.285*** 
(0.065) 

-4.37 0.324 
(0.370) 

0.87 

Perceived Health 
Risk 

-0.048 
(0.079) 

-0.60 0.188 
(0.326) 

0.58 0.056 
(0.056) 

1.00 0.269 
(0.319) 

0.84 

Comp. of 
Technology 

0.089 
(0.059) 

1.51 -0.496* 
(0.297) 

-1.67 0.137*** 
(0.051) 

2.70 -0.357 
(0.289) 

-1.24 

Ease of 
Maintenance 

-0.063 
(0.067) 

-0.95 -0.474 
(0.331) 

-1.43 0.116** 
(0.057) 

2.04 -0.274 
(0.323) 

-0.85 

Water Quantity 
Saved 

0.090* 
(0.054) 

1.68 0.466 
(0.290) 

1.60 0.169*** 
(0.050) 

3.38 0.494* 
(0.285) 

1.74 

Costs of 
Technology 

-2.59e-05*** 
(8.81e-06) 

-2.95 2.92e-5 
(4.33e-5) 

0.67 -5.13e-
05*** 

(7.51e-06) 

-6.83 6.32e-06 
(4.24e-05) 

0.15 

Lifespan of 
technology 

0.128** 
(0.064) 

2.00 -0.130 
(0.297) 

-0.44 0.157*** 
(0.051) 

3.07 -0.092 
(0.296) 

-0.31 

Age × Reliability   0.004 
(0.005) 

0.91   0.004 
(0.004) 

0.86 

Age × Health Risk   -0.012*** 
(0.004) 

-2.99   -0.011*** 
(0.004) 

-2.99 

Age × Complexity   0.003 
(0.004) 

0.71   0.003 
(0.003) 

0.78 

Age × Maintenance   0.001 
(0.004) 

0.30   0.001 
(0.004) 

0.21 

Age × quantity   0.002 0.44   0.002 0.51 
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(0.004) (0.003) 
Age × Cost   --6.16e-07 

(5.19e-07) 
-1.19   --5.82e-07 

(5.11e-07) 
-1.14 

Age × Lifespan   -0.003 
(0.004) 

-0.74   -0.002 
(0.004) 

-0.67 

Gender × Reliability   -0.486*** 
(0.180) 

-2.70   -0.436** 
(0.172) 

-2.53 

Gender × Health 
Risk 

  -0.096 
(0.154) 

-0.63   -0.092 
(0.152) 

-0.61 

Gender × 
Complexity 

  0.142 
(0.144) 

0.99   0.115 
(0.141) 

0.81 

Gender × 
Maintenance 

  -0.023 
(0.157) 

-0.14   -0.005 
(0.154) 

-0.03 

Gender × quantity   -0.042 
(0.140) 

-0.30   -0.032 
(0.137) 

-0.23 

Gender × Cost   1.22e-05 
(2.04e-05) 

0.60   8.57e-06 
(2.01e-05) 

0.43 

Gender × lifespan   0.150 
(0.142) 

1.05   0.130 
(0.143) 

0.91 

Income × Reliability   -0.035 
(0.028) 

-1.26   -0.030 
(0.026) 

-1.13 

Income × Health 
Risk 

  0.038* 
(0.023) 

1.67   0.038* 
(0.023) 

1.69 

Income × 
Complexity 

  0.009 
(0.021) 

0.41   0.005 
(0.021) 

0.23 

Income × 
Maintenance 

  -0.007 
(0.023) 

-0.29   -0.005 
(0.023) 

-0.22 

Income × quantity   -0.038* 
(0.021) 

-1.84   -0.037* 
(0.020) 

-1.80 
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Income × Cost   1.30e-06 
(3.05e-06) 

0.43   1.07e-06 
(3.00e-06) 

0.36 

Income × lifespan   0.027 
(0.021) 

1.31   0.025 
(0.021) 

1.20 

Household size × 
Reliability 

  0.006 
(0.047) 

0.12   -0.004 
(0.045) 

-0.08 

Household size × 
Health Risk 

  -0.039 
(0.039) 

-0.98   -0.037 
(0.039) 

-0.95 

Household size × 
Complexity 

  0.036 
(0.036) 

1.01   0.037 
(0.035) 

1.05 

Household size × 
Maintenance 

  0.078* 
(0.040) 

1.94   0.073* 
(0.039) 

1.85 

Household size × 
quantity 

  0.021 
(0.035) 

0.60   0.024 
(0.035) 

0.70 

Household size × 
Cost 

  -6.51e-06 
(5.27e-06) 

-1.23   -5.80e-06 
(5.19e-06) 

-1.12 

Household size × 
Lifespan 

  -0.069* 
(0.036) 

-1.94   -0.067* 
(0.036) 

-1.87 

Education × 
Reliability 

  -0.019 
(0.052) 

-0.37   -0.013 
(0.049) 

-0.26 

Education × Health 
Risk 

  0.058 
(0.043) 

1.36   0.061 
(0.042) 

1.45 

Education × 
Complexity 

  0.051 
(0.039) 

1.30   0.040 
(0.038) 

1.05 

Education × 
Maintenance 

  0.021 
(0.044) 

0.48   0.018 
(0.043) 

0.42 

Education × 
quantity 

  -0.061 
(0.039) 

-1.58   -0.057 
(0.038) 

-1.50 

Education × Cost   -8.51e-06 
(5.79e-06) 

-1.47   -9.09e-06 
(5.70e-06) 

-1.60 
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Education × 
lifespan 

  0.079** 
(0.039) 

2.03   0.081** 
(0.039) 

2.08 

Waterbill × 
Reliability 

  -0.001** 
(3.18e-04) 

-1.99   -0.001* 
(3.03e-04) 

-1.90 

Waterbill × Health 
Risk 

  4.0e-04 
(2.57e-04) 

1.55   4.07e04 
(2,55e-04) 

1.60 

Waterbill × 
Complexity 

  -4.56e-05 
(2.28e-04) 

-0.20   -9.0e-05 
(2.25e-04) 

-0.40 

Waterbill × 
Maintenance 

  1.05e-04 
(2.64e-04) 

0.40   1.35e-04 
(2.59e-04) 

0.52 

Waterbill × 
quantity 

  -1.72e-04 
(2.26e-04) 

-0.76   -1.77e-04 
(2.22e-04) 

-0.80 

Waterbill × Cost   3.37e-08 
(3.44e-08) 

0.98   2.92e-08 
(3.38e-08) 

0.87 

Waterbill × 
Lifespan 

  2.55e-04 
(2.31e-04) 

1.10   2.34e-04 
(2.31e-04) 

1.01 

Log-likelihood 
Nr. Obs. 

Nr. Respondents 
AIC 
BIC 

-3724.419 
12,120 

303 
7470.837 
7534.562 

 -3661.766 
12,120 

303 
7429.533 
7736.571 

 -3773.157 
12,120 

303 
7560.315 
7600.867 

 -3712.321 
12,120 

303 
7522.643 
7806.508 

 

Notes: Robust standard errors presented in parentheses. ***, **, *, next to coefficients represents statistical significance at the 1%, 5%, and 10% respectively.
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In addition to the RPL and NL models, we also estimated both a multinomial logit (ML) model 

and a conditional logit (CL) model. All attributes in the base ML showed statistical significance 

and the ML with interaction also reported similar results like the RPL model. In the base CL 

model only the perceived health risk associated with water-saving technologies was not 

statistically significant.  However, the CL model with interactions also showed similar results 

with all other three models.  

The marginal willingness to pay (MWTP) result in Table 5 shows attributes that are valuable for 

households to invest in water-saving technologies. When we consider the MWTP across base 

models, we observe that both the RPL and NL base models have the high MWTP for complexity 

of technology, quantity of water saved, and lifespan of technology. While the RPL and NL with 

interactions shows the highest MWTP for complexity of the technology, ease of maintenance 

and lifespan of the technology. This result indicates that both complexity of water-saving 

technologies and the lifespan of technologies are major determinants for adoption of 

technologies and are important attributes to households since they have high MWTP across all 

four models. In making their choice of water-saving technologies, households prefer 

technologies that can be easily operated and last for a long time after installation. 
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Table 5: Average Household marginal willingness to pay (Base RPL, RPL Interaction, Base Nlogit, Nlogit Interaction)  
 Base RPL RPL interaction Base NL Nlogit Interaction 

Attributes Average 
Household 

MWTP 

95% Conf. Interval Average 
Household 

MWTP 

95% Conf. Interval Average 
Household 

MWTP 

95% Conf. Interval Average 
Household 

MWTP 

95% Conf. Interval 

Reliability of 
Access 

-11277.49 -26059.77   3504.79 -12612.98 -70599.73    45373.77 -5556.72 -9278.71    -1834.72 -51215.79 -804107.52       701675.93 

Health Risk -1838.19 -7962.31     4285.93 -6436.62 -34247.02    21373.78 1097.90 -1090.06     3285.87 -42629.86 -606991.59     521731.87 

Comp. of 
Technology 

3413.38 -745.42     7572.19 16978.12 -29885.73   63841.98 2665.17 828.73      4501.62 56597.20 -664858.7      778053.1 

Ease of 
Maintenance 

-2442.28 -8281.89   3397.34 16234.22 -31961.54     64429.97 2256.15 66.02      4446.29 43373.13 -525671.59      612417.85 

Water 
Quantity Saved 

3487.2598 -1662.81     8637.33 -15944.98 -61534.19    29644.24 3300.03 994.04      5606.02 -78245.42 -1093855.5      937364.68 

Lifespan of 
technology 

4941.89 -973.87     10857.65 4464.85 -19464.43    28394.14 3071.38 963.51     5179.26 14603.83 -193129.97     222337.63 
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6 Conclusion and Policy Implication 

This paper has investigated the factors driving the adoption of four water-saving technologies 

by using econometric models that account for residential household heterogeneity in Cape 

Town, South Africa. A CE study of seven attributes, which were identified as relevant for 

household water-saving decisions, was applied.  In our pilot survey estimation, an orthogonal 

design estimate was administered to 72 respondents in other to generate parameter priors 

that were then used in our D-efficient design estimation for 303 respondents. An in-depth 

understanding of households' preference for water-saving technology is of interest since it 

provides the foundation for urban water management, which will ultimately impact cities' 

sustainable environmental policy goals. 

The results show that households are sensitive to the reliability, lifespan and quantity of water 

saved by the technology when explaining the attributes that determine adoption. We also 

found that respondents have strong preference for the technologies with least cost of 

purchase. Policy interventions should support initiatives that attempt to encourage better 

water-saving technologies that consider cost, longevity and increased water saving capacity. 

The implication of this is that investment in research and development should be promoted 

around such technologies. Alongside these technical interventions, our results also show the 

initiatives that support installation of technologies with less complexities are favourable in 

predicting positive household response to adoption. Finally, costs may also hinder adoption of 

water-saving technology. Policy interventions should be articulated around possible financial 

support that could assist poor households in acquiring such technology. 
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Abstract - Drought severity is expected to increase in South Africa in the coming years, given 

the deteriorating effects exerted by climate change on rainfall patterns and global temperature 

and evaporation. One common mitigation strategy adopted by households is to promote water 

demand management initiatives to reduce water consumption volume and complement the 

existing water supply management approaches being implemented by suppliers. This paper 

contributes to the discussion on adaptation strategies by investigating the determinants of 

adopting water-saving technologies through empirical evidence from urban Cape Town, South 

Africa. We estimate the attribute levels and household characteristics that influence the 

adoption of several water-saving technologies, including greywater reuse technology, 

rainwater collection systems, installment of dual-flush cisterns, and water-efficient 

showerheads. We use a choice modelling framework to investigate heterogeneity among 

households based on their preferences for individual or groups of characteristics embedded in 

each water-saving technology. A pilot survey (n=72) was first conducted using an orthogonal 

design method in order to obtain precise parameter priors for the D-efficient design framework 

used in our main survey (n=303) estimation. Random Parameter Logit (RPL) is compared with 

the Nested Logit (NL) model to estimate marginal willingness to pay (MWTP) for the adoption 

of water-saving technology. Our results show that households are sensitive to the reliability, 

lifespan, and quantity of water saved by the technologies when explaining the attributes that 

determine adoption. Alongside other policy interventions, our results also show that initiatives 

that support the installation of technologies with fewer complexities are favourable in 

predicting positive household response to adoption. 

Keywords: water conservation, water economics, discrete choice modeling, South Africa  

JEL Classification O33; Q25; Q55; Q58; D04  

1 Introduction 

Water management approaches that advocate for sustainability in water use have often been 

focused on using extreme measures such as tariff changes and implementation of strict water 

restriction programmes on residential water demand (Enqvist & Ziervogel, 2019). However, 

despite these measures, many empirical evidence has shown that an efficient water pricing 
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structure is difficult to implement, especially in countries with severe water scarcity.  In many 

instances, relatively high water prices are paid by poorer households compared to higher-

income users who often pay low water prices relative to their consumption patterns (De Oliver, 

1999). Also, implementation of strict water restriction programmes are often limited by 

political will (Cooper et. al., 2011; Stoutenborough & Vedlitz, 2014), and they are difficult to 

enforce, particularly in countries where institutions have limited capacity to monitor the 

policies adopted to support water use efficiency (Sisser et al., 2016). Studies showed that 

heavy-handed restrictions are unlikely to persist over time when drought severity decreases 

and consumption habits resume back to normality (Knickenmeyer & Taxin, 2018; Meissner et. 

al., 2018). Therefore, promoting sustainable water resources management approaches that 

address water scarcity requires adopting and implementing more stable and long-term driven 

strategies that offset the limitations associated with drastic water pricing and restriction 

programmes. Efficient demand management measures may also focus on effective non-price 

strategies such as adopting water-saving technologies within households. For instance, an 

earlier study by Gilg & Barr (2006) showed that water demand management can be better 

understood by investigating the factors that drive water-saving within households. A more 

recent study conducted by Fielding et. al., (2012) further iterates the need to understand the 

determinants of the adoption of water-saving technologies. Yet, no consensus has emerged 

regarding understanding the factors that drive water-saving technologies in urban households. 

Adopting water-saving technologies is an effective and sustainable non-price demand 

management measure that can reduce water scarcity  (Fuenfschilling & Truffer, 2016; Ward et 

al., 2012). A growing literature on urban water management reveals the importance of water-

saving technologies in reducing overall water demand (Booysen, Visser, & Burger, 2019; Wu, 

Zhang, & Gao, 2018). This is achieved by analyzing the factors that drive the adoption of water-

saving technologies by urban dwellers in South Africa. We target double flush toilets, low-flow 

showerheads, rainwater collection, and greywater treatment technologies. A typical South 

African middle-income household of four spends 25% of their water use in flushing the toilet, 

25% on garden and outdoor activities, 24% on bathing or showering, 13% on laundry, 11% in 

the kitchen, and 2% on other activities (Price, Ross, Rabe, & Mander, 2009). Adopting double 

flush technology is expected to reduce as much as 75% water use in flushing (Murwirapachena 

& Dikgang, 2019). Greywater constitutes about 50% of the total wastewater generated within 
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a household and its reuse may lead to significant reductions in household water demand 

(Carden et al., 2007; Roesner et al., 2006). 

This paper investigates the factors that drive the adoption of water-saving technologies in Cape 

Town. We use a choice modelling framework that compares various utility functions associated 

with different alternatives that represent payoffs associated with adopting water-saving 

technologies.  

2 Brief Related Literature  

The literature has identified several factors that drive household water demand and 

consumption patterns. These factors include household socio-demographic characteristics 

(Aitken et al., 1994; Gregory & Di Leo, 2003), behavioural change towards water usage 

(Gregory & Di Leo, 2003; Richter & Stamminger, 2012), attitudes and values towards water 

conservation practices (Syme et al., 2004; Willis et al., 2011), water restrictions programmes 

(De Oliver, 1999; Kenney, Klein, & Clark, 2004) and pricing of water (Kenney et al., 2008; 

Renwick & Archibald, 1998). Nauges & Whittington (2010) provide a comprehensive overview 

of the factors that influence residential water demand in the developing world.  

Very few studies looked at the behavioural responses associated with the adoption of water-

saving technologies by urban dwellers. This is because most of the water consumption occurs 

in the agricultural sector, and water-saving is mainly expected to take place at farm level. 

However, the growing urbanization in urban cities is not only expected to increase the volume 

of water use for drinking and residential consumption purposes but also water use in 

agriculture and manufacturing production for a growing population. More people will require 

more food and more manufacturing products, which will require more inputs used in the 

production process, including water.  Despite this, few studies have looked at the determinants 

of adoption of residential water-saving technologies (Campbell, Johnson, & Larson, 2004; 

Millock & Nauges, 2010; Renwick & Archibald, 1998; Thiam, Dinar, & Ntuli, 2020). Campbell et 

al. (2004) looked at the impacts of price and non-price water demand-side management on 

the adoption of water-saving equipment in Arizona, USA. They collected data from 19,000 

households over six years and found that changes in water pricing spur adoption of water-

conservation measures. Millock & Nauges (2010) studied the factors that drive adoption of 

Waterwise washing machines, low-volume flush toilets, restrictor taps in water supply and 
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rainwater collector tanks in 10 OECD countries in Europe. They found that household size, 

water price and whether households own property positively influence the adoption of water-

saving technologies. Thiam et al. (2020) and  Renwick & Archibald (1998) investigated the 

factors that drive the adoption of water-saving technologies in residential households in South 

Africa and California, respectively. Their results found that household size, income and 

education positively influence the adoption of water-saving technologies. This present paper 

contributes to the discussion on urban water management by investigating the factors that 

drive the adoption of water-saving technologies through empirical evidence from South Africa. 

We build on Thiam et al. (2020) and Campbell et al. (2004) and look at the behavioural 

responses associated with adoption of water-saving technologies in residential households. 

This research provides an improved understanding of the challenges associated with the 

adoption of water-saving behaviours in urban areas that experience water scarcity. 

3 Theory and Methods 

3.1 The Choice Experiment Method and the Econometric Model 

Developed from the random utility theory, choice experiments assume that individuals are 

rational decision-makers who choose the most preferred (utility-maximising) option when 

faced with various possible set of options (McFadden, 1973; Howard, 1977). According to 

McFadden (1973), these rational individuals make choices based on the characteristics of the 

good, along with a random component. The random component could emerge from the 

uniqueness in the individuals' preferences, or due to researchers having in-complete 

information about the individual observed (Ben-Akiva & Lerman, 1985). Where a household 

head !’s utility, ", of a water-saving technology # is assumed to consist of a deterministic and 

a stochastic element: 

"$% = 	($%)*%, ,%, -. +	0$%	                                      (1) 

Where ( depends on the characteristics of the technology *%, individual specific characteristics 

,%, and the price - and 0$%	is the unobserved random component that is IID extreme value type 

12 and consists of factors affecting the choice but are not observable to the researcher 

 
2 Historically,  EV1  distribution  has  been  referred  to  by  a  number  of  names,  including Weibull, Gumbel 
and double-exponential. 
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(Louviere et al., 2000). The theory states that an individual will choose an alternative 1 from a 

finite set of alternatives 2, given the indirect utility of 1 is greater than the indirect utility of 

any other alternative, #. This means that 

"$3 > "$% 	⟹ ($3 +	0$3 	> 	($% +	0$%			∀	# ≠ 1; #, 1 ∈ 2	)   (2) 

The probability that an individual chooses alternative 1 is the same as the probability that the 

utility of alternative 1 is greater than the utility of any other alternative of the choice set 

(Adamowicz, 2004). In our case, the utility definition of the choice-task among five alternatives, 

one of which is the status quo option, is 

"3$;

⎩
⎪
⎨

⎪
⎧(

)@A2, *3$;,	B$	, C$	. + 03$;,				if	1 = 1;

()@A2, *3$;,	B$	, C$	. + 03$;,				if	1 = 2;

()@A2, *3$;,	B$	, C$	. + 03$;,				if	1 = 3;

()@A2, *3$;,	B$	, C$	. + 03$;,				if	1 = 4;
03$;,																													if	1 = status	quo

                                  (3) 

where ! denotes the individual, 1 the alternative, and P the choice-occasion. (3$;, the indirect 

utility is a function of a vector of variables explaining choice *3$; and chosen vectors of 

individual-specific parameters, 	B$  . 	B$  is assumed to take on a multivariate normal distribution 

where the off-diagonal elements of the covariance matrix are zero. C$	is an error component 

associated with the two non-status quo choices and is assumed to be normally distributed 

white noise,	C$	 ∼ R	(0, σV). This error component reflects that there may be additional 

variance related to the four non-status quo alternatives, because it is cognitively more 

demanding for respondents to evaluate four complex alternatives in each choice set as 

opposed to the status quo (Beharry-Borg et. al., 2009; Hensher et al., 2015; Morse-Jones et al., 

2012). Lastly, 03$;, is a random error term that is iid extreme value type 1. 

In order to calculate the choice probability for a given choice-occasion P, we use a 

random we use a random parameter logit model (RPL) and assume that individuals seek to 

maximise utility. Conditional on the individual-specific parameters,		B$, and error components, 

C$	, the probability that respondent ! chooses a specific alternative 1 in choice-task P (of the 

sequence P = 1, . . . , R) from the five alternatives ( j = 1, . . . , J ) is logit: 
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Pr(1!P|	B$, C$	) =
exp(B$

]^3$; + C$)

∑ exp)B$
]
%̂$; + C$.

`
%

																													(3)	 

If we assume independence over choice-tasks made by the same individual, the joint 

probability of an individual making a sequence of choices is the product of the, in our case, ten 

probabilities. The probability of choice unconditional on the error component is obtained by 

integrating over the error-component space. Following this, the marginal probability of choice 

can be derived from integrating over the distribution functions for the random 	Ba parameters 

(Beharry-Borg et al., 2009; Train et al., 1987). Following the above, the probability of choosing 

alternative 1 becomes: 

Pr(1!P) = ∫c∏ e
fgh)ij

klmjnopj.

∑ fgh)ij
klqjnopj.

r
q

st
;uv w x(B)y                   (4) 

Where x(B) represents the distribution function for B, with mean z and variance {. The 

model is not sensitive to the independence of irrelevant alternatives (IIA) condition and, 

furthermore, it allows for individual-specific B estimates based on specified distributions (Train 

et al., 1998). This means that the model utilises the information that each respondent has 

answered several choice sets, by making taste parameters constant over choices within 

individuals but not between individuals. Including this information is likely to enhance the 

explanatory power of the model. Even though the integral in (4) does not have a closed-form, 

the choice probability in the RPL model can be estimated through simulation. The unknown 

parameters |, such as the mean and variance of the random coefficient distribution, can be 

estimated by maximizing the simulated log-likelihood function. For a given mean and variance 

of a random coefficient distribution, the simulated probability 	}~3$;	is strictly positive and twice 

differentiable with respective to the unknown parameters |. Therefore, the simulated log-

likelihood function log-likelihood is: 

�ÄÅ�(|) = 	ÇÇy3$;

`

3uv

ln	}~3$;																																		(5)

Ü

$uv

 

Where y3$;=1 if individual ! chooses alternative 1 and zero otherwise. Each individual is 

assumed to make choices independently and only make the choice once. The value of 

estimates that maximizes the SLL is called the maximum simulated likelihood (MSL) estimate. 



7 
 

To derive the mathematical form of the NL model, we consider a two-level NL structure3 in 

which the total choice sets are partitioned in á nonoverlapping subsets (nests) àv, . . . , àâ. 

The utility of alternative 1 in nest àâ is still "$% = 	($% +	0$%, again with ($%  the observed part 

of the utility. The NL model is obtained by assuming that the vector of disturbances has a 

cumulative distribution of a GEV type distribution: 

 

0*ä	ã− Ç çÇ 0ap$%/èê

3∈ëê

í

èêâ

âuv

ì																															(6) 

The parameter èâ is a measure of the degree of independence in the random part of the utility 

among the alternatives in the nest á. The distribution for the unobserved components 

proceed the choice probability for alternative # in nest àâ: 

}$% =
0ïjq/èê)∑ 0ïjm/èê3∈ëê .

∑ )∑ 0ïjm/èñ3∈ëñ .
èñâ

óuv

èêav

																									(7) 

If  á = ô, meaning two alternatives are in the same nest, the factors in parentheses cancel each 

other out and it shows that IIA holds. Train (2003) shows that some other form of IIA holds 

across nests, such as independence from irrelevant nests (IIN). Therefore, in a NL model, IIA 

holds for alternatives within each nest and IIN holds over alternatives in different nests. The 

observed component of the utility function can be distinct in two parts: "$% = 	{$â + ö$% +

	0$%. Here {$â is the part that is constant for all alternatives within a nest. This variable depends 

only on variables that describe next á, therefore they differ over the nests but not over the 

alternatives within a nest. ö$%  is simply define as ($% −	{$â and depends on variables that 

describe alternative #, so they vary over alternatives within next á. The probability that an 

alternative is chosen ca be written as the product of the probability that a certain nest is chosen 

multiplied with the probability that an alternative within that nest is chosen: 

}$% = 	}$%\ëê ∙ 		}$ëê     (8) 

The conditional probability }$%\ëê  can be given as: 

 
3 The extension of a two-level NL structure to three-level or four-level ones can be done with the same 
methodology used in this paper. 
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}$%\ëê =
0ùjq/	èê

∑ 0ùjm/èê3∈ëê

																																								(9) 

                                     

and 

}$ëê = 	
0üjêo	èê†jê

∑ 0üjño	èñ†jñâ
óuv

																						(10) 

Where 

†$â = ln Ç 0ùjq/èê

3∈ëê

																																		(11) 

 

These expressions are derived from the choice probabilities stated earlier. Train (2003) gives 

the derivation by algebraic rearrangement. It is customary to refer to the marginal probability 

as the upper model and to the conditional probability as the lower model. The quantity †$â 

links the lower and upper model by transferring information from the lower model to the upper 

model ( Ben-Akiva and Lerman, 1985). This term is the logarithm of the denominator of the 

lower model, which means that èâ†$â is the expected utility that the decision maker obtains 

from the choice among the alternatives in nest àâ.  

The parameter of the NL can be estimated by standard maximum likelihood techniques: 

�	 = 	° °)}$%\ëê	}$ëê.
¢jq																	(12)

%∈ëê

Ü

$uv

 

Thus, the log likelihood becomes: 

log� = 	Ç Ç §$%
%∈ëê

ln}$%\ëê +Ç Ç §$â
â∈•

ln

Ü

$uv

Ü

$uv

}$ëê												(13) 

We estimate the marginal effects of each attribute in order for the results to be of more policy 

relevance. Additionally, understanding the marginal effects allows us to test for variations in 

welfare measures by examining the marginal willingness to pay (MWTP) estimates. MWTP 

estimates show the marginal rate of substitution (MRS) between each attribute and the 

monetary attribute; this is an important output of choice models, as it gives average estimates 

of what respondents are prepared to pay for or against each attribute (Hensher et al., 2015).  

Equation (14) below shows the expression of the MWTP. 
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{¶}l = 	
∆l

∆®
= 	−

©™jq
©´q
©™jq
©¨j

= −
iq
≠
= Æ{¶}                                         (14) 

3.2 Introduction to Discrete Choice Experiment 

The experimental design's quality drives the precision and statistical significance of parameter 

estimates when performing an empirical analysis. This is because there exists a relationship 

between the statistical properties of stated choice experiments and the econometric models 

used to estimate the experimental data (Butkeviciute, 2017). There are different choice 

experiment design types that have been adopted by researchers, including full factorial, 

fractional factorial, orthogonal and efficient designs (Gao et al., 2010; Kløjgaard et al., 2012; 

Ryan et al., 2008; Street et al., 2019). The designs primarily differ in the assumptions imposed, 

specifically on the type of correlation structure between attributes in the design matrix.  

In this paper we focus on the orthogonal and D-efficient designs. The orthogonality property 

has often been considered the traditional and state-of-practice approach. A design is said to 

be orthogonal "if it satisfies attribute level balance and all parameters are independently 

estimable."4 Orthogonal designs are generated by imposing the property of orthogonality on 

the attributes contained in the columns of the design matrix  (J. M. Rose & Bliemer, 2009). On 

the other hand, efficient designs are derived based on the statistical properties of discrete 

choice models. Efficiency based designs reduce the sample size requirement needed to obtain 

robust parameter estimates. More specifically, D-efficient designs have been mostly relied on 

by researchers because it aims to minimize the standard errors of the parameters at design 

stages and improve the quality of the results obtained when estimating parameter values. 

(Alpízar et al., 2001; Bliemer et al., 2010; Dardanoni & Guerriero, 2021; Lai & Yue, 2020; Rose 

& Bliemer, 2009). However, efficient designs are only efficient if prior parameters are known. 

If incorrect prior parameters are used, efficient designs become inefficient (Bliemer et al., 

2010). To address this problem, the literature recommends drawing prior parameters from i) 

the literature ii) pilot study iii) focus groups or iv) expert judgement (Rose, 2012). The 

 
4 Ngene Manual, p. 64, ChoiceMetrics, 2012 
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experiment designs discussed in this paper are applied using the Ngene5 software in the 

context of the pilot and final survey designs. 

3.3 Design of the choice experiment 

In this study, the water-saving technologies we considered are i) greywater reuse ii) rainwater 

collection iii) efficient showerheads, and iv) dual flush cistern. Greywater constitutes about 

50% (about 68litres/capital/day) of the total wastewater generated within a household in Cape 

Town (Carden et al., 2007; Roesner et al., 2006). An integrated domestic rainwater harvesting 

involves collecting, storing, and channeling rainwater to the toilet for flushing and gardening 

irrigation outlets instead of using potable water. Replacing a 12L cistern with a 3L dual cistern 

saves about 75% of water (Jansen & Schulz, 2006; Murwirapachena & Dikgang, 2019; Zaied, 

2018) in SA households.  

Table 1 shows the selected attributes of each water-saving technology, and it describes their 

associated levels. Previous studies highlight "Reliability of Access" as one of the major factors 

that influence the adoption of water-saving technologies (Kaur & Rampersad, 2018; 

Zaunbrecher, Kowalewski & Ziefle, 2014). Households are more willing to adopt new 

technology that is perceived to be reliable when water can be accessed immediately it is 

needed. In our case, this refers to how dependable and reliable water supply from a given 

technology is. It considers the unpredictable nature of rainfall and the predictable availability 

of wastewater and cistern water within the household. The two levels of this attribute are: 

Reliable Access and Unreliable Access. The second attribute is "Perceived Health Risk". The 

level of health risk associated with a technology could largely influence its adoption rate. This 

risk can be present in the form of a foul smell, degree of water contamination and the 

possibility of diseases and infection to the household. This attribute has two levels: Health risk 

and No health risk. The third attribute identified in this study is the "Complexity of technology". 

This refers to the ease of use of a given technology and the expertise involved in installing and 

operating it. The ease of use of technology could have a huge influence on respondent's 

adoption rate (Makki & Mosly, 2020; Sharma, Begbie, & Gardner, 2015). The two levels of the 

attribute are; easy (when no extra training is required before usage of the technology) and 

 
5 Ngene is a comprehensive software for designing choice experiments. It is designed to be the single source of 
stated choice experimental designs (ChoiceMetrics, 2012). 
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hard (when very sophisticated and intensive training is needed before installation of the 

technology). The fourth attribute is the "Ease of Maintenance", this differs from the above 

third attribute mainly because maintenance and services are done post technology installation. 

The relevance of this attribute can be distinguished based on the needed frequency of 

maintenance of technology that will ensure optimal performance, as well as the expertise 

required for such maintenance. It also captures both the ease of acquisition of the 

maintenance skills and the intensity of training needed to service the technology after 

installation. The identified attribute levels are: Difficult and Easy. Investing in water-efficient 

technologies is expected to reduce the household's monthly water bill by reducing the quantity 

of water demanded from the municipality. Thus, the fifth attribute considered in this study is 

"Water Quantity Saved". The average urban household of 5 people uses 640 liters of water per 

day in South Africa (COCT, 2013). Technologies that reduce the quantity of water used for 

specific household activities, store rainwater and make wastewater available for reuse will 

ultimately reduce the total quantity of water demanded by this household. The attribute levels 

are; above 25% (when technology saves up to 25% of average household water demand) and 

below 25% (when technology saves less than 25% of average household demand. The sixth 

attribute identified is the "Costs of Technology", which can also influence adoption decisions 

within households. The adoption of technologies with high cost of purchase and installation 

could be limited in low-income households (Kaur & Rampersad, 2018). Four levels of costs 

were examined for this attribute. Finally, previous studies report the "lifespan of a technology" 

as an important factor that influences technology adoption (Heinz, 2013; Peek et al., 2016). In 

choosing water-saving technologies, a household is more willing to adopt technologies that 

have a longer lifespan. The two levels of the attribute are "less than 5 years" and "more than 

10 years". There are 256 possible combinations of the attributes and their levels as shown in 

Table 1, with six attributes varying across two levels each and one attribute varying across four 

levels (26X 41).  
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Table 1: Definition of Attributes and their Level 
Attributes  Definition  Levels of attributes 
Reliability of Access This indicates how dependable and reliable 

water supply from the technology is. 
Reliable Access: Water can be accessed from selected technology 
every time it is needed. 
Unreliable Access: Access to water from technology may be seasonal. 

Perceived Health Risk This refers to the households' perception of 
possible health-related risks, discomfort or 
stress associated with the use of a technology 

High risk: Selected technology uses chemicals products in water 
treatment and may emit foul smells. 
No health risk: No chemical products are used in technology and 
there is no emission of foul smell. 

Complexity of Technology This refers to the ease of use of technology 
and the expertise involved in the installation 
and day-to-day operation. It focuses on 
whether technology can be operated with no 
prior training or not. 

Hard: When high-level expertise and training is needed for the 
installation and operation of the technology. 
Easy: When technology can be operated with no prior training. 

Ease of Maintenance  This captures whether intensive training is 
needed for the maintenance or servicing of 
technology to ensure optimal performance. It 
also captures the frequency at which 
maintenance or servicing is needed. 

Difficult: When intensive training is needed for the maintenance of 
technology and maintenance is required at least once a month. 
 
Easy: When maintenance is easy and rarely necessary 

 Water Quantity Saved This refers to the percentage of water saved in 
a household after technology adoption.  

Above 25%: If technology saves more than 25% of the average 
water demand of household before installation. 
Below 25%: If the presence of technology does not reduce household 
water demand by up to 25%. 

Costs of Technology Cost of purchasing and installing the technology R5,000; R10,000; R15,000; R20,000 
Lifespan of the technology This refers to the average number of years the 

technology can be used optimally without the 
need for replacement. 

Less than 5 years 
 
More than 10 years 
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4 Survey Design and Data Collection 

4.1 Pilot and Main Survey Design 

The pilot survey's aim is not to obtain precise parameter estimates for the D-efficient design. 

Instead, the goal is to roughly estimate the weight individuals place on water-saving 

technologies' different attributes. To minimize bias and elicit the weight households place on 

the attributes that form of prior values required to generate the final design of the survey, an 

orthogonal design of 36 alternative profiles made up of six blocks was created using Ngene 

from the full set of possible combinations. The number of alternatives is informed by the 

literature review and is based on the frequently used number of blocks and choice sets for a 

design similar to the one being considered in this paper. The software produced a design with 

one status quo and four non-status quo alternatives per choice set, and six choice sets 

arranged in six survey blocks/cards. The status quo represents the household's current 

situation, i.e., what they are doing now, whether they have a technology installed or not. Each 

respondent was randomly assigned six choice sets which had been prepopulated in six 

different questionnaire versions. In addition, each pilot survey questionnaire also included 

sections on socioeconomic characteristics of households. We carried out the pilot survey in 

November 2020 and obtained responses from 72 households. Each respondent evaluated 5 

alternatives throughout 6 survey questions which generated 1040 observations in total. The 

main survey design generation process took place over many days to allow Ngene to evaluate 

as many potential designs as possible and locate the smallest comparable D-error for the final 

questionnaire. 

The prior parameter estimates from the pilot orthogonal survey were then used to construct 

the main survey. After allowing Ngene to run the D-efficient design syntax, we manually saved 

designs with the lowest Db-errors. A design of eight distinct choice sets was evaluated using 

Ngene, from the full set of all possible combinations. Like the pilot design, the software also 

produced a design with one status quo and four non-status quo alternatives per choice set. In 

addition to the section on households' socioeconomic characteristics, the questionnaire also 

recorded information on household water consumption and water-saving strategies adopted 

within households. The final survey instrument was administered to 303 households within the 

City of Cape Town.  
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5 Results 

Table 2 shows the descriptive statistics of the respondents for both the pilot and main surveys. 

During data inputting for the pilot survey, data was captured such that each individual 

household head was entered 30 times to include the choices they made for five options and 

six different choice sets. In the main survey data was captured such that each individual was 

entered 40 times to include the choices they made for five options and eight different choice 

sets. Responders averaged 54 years old in the pilot and 50 years of age in the main survey. The 

average household size is 5 in the pilot survey while it is 4 in the main survey. The gender of 

the household heads showed minor differences in both surveys, from 82% male respondents 

in the pilot survey to 83% in the main survey. More results of our main survey showed that 

66% of the respondents are employed and about 16% of the respondents have total yearly 

household income of above one million Rand. The average tap water consumption per month 

is 6262L while the mean monthly water bill is R367.  

Table 2: Descriptive Statistics 
 

Mean (Std. Dev.) 
Variables Pilot Survey (n=72) Main Survey (n=303) 

Age (Years) 54.24 (9.61) 49.66 (15.61) 
Gender (1 =male, 0 = female) 0.82 (0.39) 0.83 (0.37) 
Household Size 4.58 (3.27) 3.70 (1.47) 
Number of employed household member 2.15 (1.39) 1.83 (1.32) 
Educational Level (1=Primary education, 
2=Secondary school, 3=Some technical 
certificate/diploma, 4=Bachelor’s degree, 
5=Honor’s degree, 6=Professional/Master’s 
degree, 7=Doctorate degree) 

4.22 (1.69) 3.55 (1.53) 

Total Annual Household Income  
(1=R50,000 or below,  
2=R50,001 to R100,000,  
3=R100,000 to R150,000 
4=R150,000 to R200,000 
5=200,000 to R350,000 
6=R350,000 to R500,000 
7=R500,000 to R750,000 
8=R750,000 to R1,000,000 
9=R1,000,000 to R2,000,000 
10=Above R2,000,000) 

7.86 (2.71) 5.41 (2.92) 
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5.1 Parameter Priors 

The pilot coefficient estimates were estimated using Stata and used in the main survey design 

as parameter priors. These priors are outlined in Table 3 along with the assumed standard 

deviations. The population standard deviations of the respective attributes included in the 

design were approximated using the values of the coefficient estimates' standard errors. In our 

model, each parameter prior !"# is assumed to follow a normal distribution with mean $# and 

standard deviation %#. The population standard deviation Table 3 have been approximated 

using the standard errors of the mean coefficient estimates from the pilot study (Greene, 

2008). In order to obtain a rough approximation of the population standard deviation % we use 

the relationship between sample size, the standard error of the parameter estimate and the 

population standard deviation &. (.)* = ,
√.

6. This method was followed instead of randomly 

assigning values to the standard deviations. 

                 Table 3: Main survey parameter priors 
Attribute # Assumed Priors 

!"#~1($#, %#) 
Reliability of access 1(0.38, 1.10) 

Perceived Health Risk 1(0.57, 1.10) 
Complexity of Technology 1(-0.12, 1.02) 
Ease of Maintenance 1(0.90, (1.02) 
Water Quantity Saved 1(-0.61, 1.10) 
Cost of Technology 1(-8e4, 1e4) 
Lifespan of Technology 1(-0.17, 1.10) 

 

5.2 RPL and Nested Logit Model 

To test all attributes for presence of preference heterogeneity, RPL model assumes that all the 

variable coefficients are distributed randomly following a normal distribution. In the RPL model 

estimation, not all the attributes were found to be significant. As shown in Table 4, only four 

attributes in the base RPL model are significant. Access to technology and lifespan of the 

technology shows statistical significance at 5% while the cost of the technology is significant at 

1%. The estimates show that the cost of water-saving technologies, their access, lifespan, and 

 
6 This method does not present a precise and unbiased estimate of the population standard deviation but 
helps us to avoid assigning random prior values using of sample size of 72 in the pilot study. 
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the quantity of water they save are important determinants technology adoption within 

households. The interactions of the Age and Health Risk, Gender and Reliability, Household 

income and Health Risk, Income and water quantity saved, Household size and Lifespan, 

Education and Lifespan and Waterbill and Reliability of technology all show statistical 

significance in the RPL model. Table 4 also includes columns for z-statistics which indicate the 

relative explanatory power of the various attributes in respondents' choice of water-saving 

technology. Under the base RPL model the attributes with the largest z-values are the quantity 

of water saved and lifespan of technology. 

The nest structure of our nested logit model is shown in figure.  We generated a categorical 

variable that identifies the first-level set of alternatives based on the cost implication of our 

five choice alternatives: (i) High-Cost technologies, (ii) Minimal cost technologies and (iii) no 

cost alternative. Figure 1 shows the nesting structure in which rainwater collection and 

greywater treatment technologies are more similar to each other than they are to water-

efficient showerhead and double-flush toilet. The base NL results in table 4 shows that all 

attributes are statistically significant except the perceived health risk associated with water-

saving technologies. The z-values of the NL interactions and RPL interactions show very similar 

results to each other. 

 

 

 

 

 

Figure 1: Two-Level Nest Structure 

Double-flush Toilet Water-efficient 
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Status Quo/ No 
Technology 
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Table 4: Random Parameter Logit and Nested Logit Model 
 Base RPL RPL Interaction         Base NL NL Interaction 

Attributes Coefficient 
(SE) 

|" − $%&%| Coefficient 
(SE) 

|" − $%&%| Coefficient  
(SE) 

|" − $%&%| Coefficient 
(SE) 

|" − $%&%| 

Reliability of Access -0.293** 
(0.135) 

-2.16 0.369 
(0.406) 

0.91 -0.285*** 
(0.065) 

-4.37 0.324 
(0.370) 

0.87 

Perceived Health 
Risk 

-0.048 
(0.079) 

-0.60 0.188 
(0.326) 

0.58 0.056 
(0.056) 

1.00 0.269 
(0.319) 

0.84 

Comp. of 
Technology 

0.089 
(0.059) 

1.51 -0.496* 
(0.297) 

-1.67 0.137*** 
(0.051) 

2.70 -0.357 
(0.289) 

-1.24 

Ease of 
Maintenance 

-0.063 
(0.067) 

-0.95 -0.474 
(0.331) 

-1.43 0.116** 
(0.057) 

2.04 -0.274 
(0.323) 

-0.85 

Water Quantity 
Saved 

0.090* 
(0.054) 

1.68 0.466 
(0.290) 

1.60 0.169*** 
(0.050) 

3.38 0.494* 
(0.285) 

1.74 

Costs of 
Technology 

-2.59e-05*** 
(8.81e-06) 

-2.95 2.92e-5 
(4.33e-5) 

0.67 -5.13e-
05*** 

(7.51e-06) 

-6.83 6.32e-06 
(4.24e-05) 

0.15 

Lifespan of 
technology 

0.128** 
(0.064) 

2.00 -0.130 
(0.297) 

-0.44 0.157*** 
(0.051) 

3.07 -0.092 
(0.296) 

-0.31 

Age × Reliability   0.004 
(0.005) 

0.91   0.004 
(0.004) 

0.86 

Age × Health Risk   -0.012*** 
(0.004) 

-2.99   -0.011*** 
(0.004) 

-2.99 

Age × Complexity   0.003 
(0.004) 

0.71   0.003 
(0.003) 

0.78 

Age × Maintenance   0.001 
(0.004) 

0.30   0.001 
(0.004) 

0.21 

Age × quantity   0.002 0.44   0.002 0.51 
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(0.004) (0.003) 
Age × Cost   --6.16e-07 

(5.19e-07) 
-1.19   --5.82e-07 

(5.11e-07) 
-1.14 

Age × Lifespan   -0.003 
(0.004) 

-0.74   -0.002 
(0.004) 

-0.67 

Gender × Reliability   -0.486*** 
(0.180) 

-2.70   -0.436** 
(0.172) 

-2.53 

Gender × Health 
Risk 

  -0.096 
(0.154) 

-0.63   -0.092 
(0.152) 

-0.61 

Gender × 
Complexity 

  0.142 
(0.144) 

0.99   0.115 
(0.141) 

0.81 

Gender × 
Maintenance 

  -0.023 
(0.157) 

-0.14   -0.005 
(0.154) 

-0.03 

Gender × quantity   -0.042 
(0.140) 

-0.30   -0.032 
(0.137) 

-0.23 

Gender × Cost   1.22e-05 
(2.04e-05) 

0.60   8.57e-06 
(2.01e-05) 

0.43 

Gender × lifespan   0.150 
(0.142) 

1.05   0.130 
(0.143) 

0.91 

Income × Reliability   -0.035 
(0.028) 

-1.26   -0.030 
(0.026) 

-1.13 

Income × Health 
Risk 

  0.038* 
(0.023) 

1.67   0.038* 
(0.023) 

1.69 

Income × 
Complexity 

  0.009 
(0.021) 

0.41   0.005 
(0.021) 

0.23 

Income × 
Maintenance 

  -0.007 
(0.023) 

-0.29   -0.005 
(0.023) 

-0.22 

Income × quantity   -0.038* 
(0.021) 

-1.84   -0.037* 
(0.020) 

-1.80 
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Income × Cost   1.30e-06 
(3.05e-06) 

0.43   1.07e-06 
(3.00e-06) 

0.36 

Income × lifespan   0.027 
(0.021) 

1.31   0.025 
(0.021) 

1.20 

Household size × 
Reliability 

  0.006 
(0.047) 

0.12   -0.004 
(0.045) 

-0.08 

Household size × 
Health Risk 

  -0.039 
(0.039) 

-0.98   -0.037 
(0.039) 

-0.95 

Household size × 
Complexity 

  0.036 
(0.036) 

1.01   0.037 
(0.035) 

1.05 

Household size × 
Maintenance 

  0.078* 
(0.040) 

1.94   0.073* 
(0.039) 

1.85 

Household size × 
quantity 

  0.021 
(0.035) 

0.60   0.024 
(0.035) 

0.70 

Household size × 
Cost 

  -6.51e-06 
(5.27e-06) 

-1.23   -5.80e-06 
(5.19e-06) 

-1.12 

Household size × 
Lifespan 

  -0.069* 
(0.036) 

-1.94   -0.067* 
(0.036) 

-1.87 

Education × 
Reliability 

  -0.019 
(0.052) 

-0.37   -0.013 
(0.049) 

-0.26 

Education × Health 
Risk 

  0.058 
(0.043) 

1.36   0.061 
(0.042) 

1.45 

Education × 
Complexity 

  0.051 
(0.039) 

1.30   0.040 
(0.038) 

1.05 

Education × 
Maintenance 

  0.021 
(0.044) 

0.48   0.018 
(0.043) 

0.42 

Education × 
quantity 

  -0.061 
(0.039) 

-1.58   -0.057 
(0.038) 

-1.50 

Education × Cost   -8.51e-06 
(5.79e-06) 

-1.47   -9.09e-06 
(5.70e-06) 

-1.60 
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Education × 
lifespan 

  0.079** 
(0.039) 

2.03   0.081** 
(0.039) 

2.08 

Waterbill × 
Reliability 

  -0.001** 
(3.18e-04) 

-1.99   -0.001* 
(3.03e-04) 

-1.90 

Waterbill × Health 
Risk 

  4.0e-04 
(2.57e-04) 

1.55   4.07e04 
(2,55e-04) 

1.60 

Waterbill × 
Complexity 

  -4.56e-05 
(2.28e-04) 

-0.20   -9.0e-05 
(2.25e-04) 

-0.40 

Waterbill × 
Maintenance 

  1.05e-04 
(2.64e-04) 

0.40   1.35e-04 
(2.59e-04) 

0.52 

Waterbill × 
quantity 

  -1.72e-04 
(2.26e-04) 

-0.76   -1.77e-04 
(2.22e-04) 

-0.80 

Waterbill × Cost   3.37e-08 
(3.44e-08) 

0.98   2.92e-08 
(3.38e-08) 

0.87 

Waterbill × 
Lifespan 

  2.55e-04 
(2.31e-04) 

1.10   2.34e-04 
(2.31e-04) 

1.01 

Log-likelihood 
Nr. Obs. 

Nr. Respondents 
AIC 
BIC 

-3724.419 
12,120 

303 
7470.837 
7534.562 

 -3661.766 
12,120 

303 
7429.533 
7736.571 

 -3773.157 
12,120 

303 
7560.315 
7600.867 

 -3712.321 
12,120 

303 
7522.643 
7806.508 

 

Notes: Robust standard errors presented in parentheses. ***, **, *, next to coefficients represents statistical significance at the 1%, 5%, and 10% respectively.
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In addition to the RPL and NL models, we also estimated both a multinomial logit (ML) model 

and a conditional logit (CL) model. All attributes in the base ML showed statistical significance 

and the ML with interaction also reported similar results like the RPL model. In the base CL 

model only the perceived health risk associated with water-saving technologies was not 

statistically significant.  However, the CL model with interactions also showed similar results 

with all other three models.  

The marginal willingness to pay (MWTP) result in Table 5 shows attributes that are valuable for 

households to invest in water-saving technologies. When we consider the MWTP across base 

models, we observe that both the RPL and NL base models have the high MWTP for complexity 

of technology, quantity of water saved, and lifespan of technology. While the RPL and NL with 

interactions shows the highest MWTP for complexity of the technology, ease of maintenance 

and lifespan of the technology. This result indicates that both complexity of water-saving 

technologies and the lifespan of technologies are major determinants for adoption of 

technologies and are important attributes to households since they have high MWTP across all 

four models. In making their choice of water-saving technologies, households prefer 

technologies that can be easily operated and last for a long time after installation. 
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Table 5: Average Household marginal willingness to pay (Base RPL, RPL Interaction, Base Nlogit, Nlogit Interaction)  
 Base RPL RPL interaction Base NL Nlogit Interaction 

Attributes Average 
Household 

MWTP 

95% Conf. Interval Average 
Household 

MWTP 

95% Conf. Interval Average 
Household 

MWTP 

95% Conf. Interval Average 
Household 

MWTP 

95% Conf. Interval 

Reliability of 
Access 

-11277.49 -26059.77   3504.79 -12612.98 -70599.73    45373.77 -5556.72 -9278.71    -1834.72 -51215.79 -804107.52       701675.93 

Health Risk -1838.19 -7962.31     4285.93 -6436.62 -34247.02    21373.78 1097.90 -1090.06     3285.87 -42629.86 -606991.59     521731.87 

Comp. of 
Technology 

3413.38 -745.42     7572.19 16978.12 -29885.73   63841.98 2665.17 828.73      4501.62 56597.20 -664858.7      778053.1 

Ease of 
Maintenance 

-2442.28 -8281.89   3397.34 16234.22 -31961.54     64429.97 2256.15 66.02      4446.29 43373.13 -525671.59      612417.85 

Water 
Quantity Saved 

3487.2598 -1662.81     8637.33 -15944.98 -61534.19    29644.24 3300.03 994.04      5606.02 -78245.42 -1093855.5      937364.68 

Lifespan of 
technology 

4941.89 -973.87     10857.65 4464.85 -19464.43    28394.14 3071.38 963.51     5179.26 14603.83 -193129.97     222337.63 
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6 Conclusion and Policy Implication 

This paper has investigated the factors driving the adoption of four water-saving technologies 

by using econometric models that account for residential household heterogeneity in Cape 

Town, South Africa. A CE study of seven attributes, which were identified as relevant for 

household water-saving decisions, was applied.  In our pilot survey estimation, an orthogonal 

design estimate was administered to 72 respondents in other to generate parameter priors 

that were then used in our D-efficient design estimation for 303 respondents. An in-depth 

understanding of households' preference for water-saving technology is of interest since it 

provides the foundation for urban water management, which will ultimately impact cities' 

sustainable environmental policy goals. 

The results show that households are sensitive to the reliability, lifespan and quantity of water 

saved by the technology when explaining the attributes that determine adoption. We also 

found that respondents have strong preference for the technologies with least cost of 

purchase. Policy interventions should support initiatives that attempt to encourage better 

water-saving technologies that consider cost, longevity and increased water saving capacity. 

The implication of this is that investment in research and development should be promoted 

around such technologies. Alongside these technical interventions, our results also show the 

initiatives that support installation of technologies with less complexities are favourable in 

predicting positive household response to adoption. Finally, costs may also hinder adoption of 

water-saving technology. Policy interventions should be articulated around possible financial 

support that could assist poor households in acquiring such technology. 
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