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Abstract 

In many urban settings around the world, the severity of water scarcity has induced changes in 

household behaviors, leading to reduction in the volume of water demanded. One of the most 

widely used strategies is adoption of water-saving equipment that collects, stores and 

eventually treats wastewater from various sources within the household. This paper 

investigates the factors that drive adoption of water-saving equipment in Cape Town, South 

Africa, following the catastrophic “Day Zero” water crisis in 2018.  The paper uses a 

disaggregated technology diffusion model to determine the attribute levels and socioeconomic 

characteristics that influence adoption of water-saving equipment in urban communities in 

South Africa. Data collected from a sample of 465 representative households in Cape Town 

are used in a choice modeling framework. Latent class analysis (LCA) is compared with both 

multinomial logit and conditional logit models to estimate marginal willingness to pay 

(MWTP) for adoption of water-saving equipment. The LCA revealed three household classes 

with distinct preferences, suggesting divergence in adoption of water-saving equipment. [165 
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1. Introduction 

Water scarcity is one of the biggest threats that can negatively affect not only economic 

development, but also environmental and human-health quality worldwide. These negative 

impacts are more severe for developing countries that face limited financial, technical, and 

regulatory capacities to allow mitigation of the water scarcity. Limited rainfall combined with 

mismanagement of available water resources and poor water supply infrastructures have led to 

disastrous situations that left many people – mainly the poor in the developing world – with 

limited access to water. Recent estimates by the World Health Organization (WHO) suggest 

that 2.1 billion people worldwide lack access to clean water services (WHO 2017).   

Addressing water scarcity requires a combination of supply and demand management measures 

that not only promote technological change to support widespread adoption of water-efficient 

equipment, but also changes in behavior that contribute to water conservation. In the residential 

sector, examples of such technological changes could include adoption of low-flow 

showerheads, low-flow toilets, water-saving devices in taps, toilets and showers, greywater 

collection systems, and in-house greywater treatment technologies. Whereas examples of 

behavioral change could include turning off running water while brushing teeth, turning off the 

shower when soaping up, using dishwashers and washing machines when loads are full, and 

capturing water in buckets while showering.  

Yet, no consensus has emerged when it comes to understanding the factors that drive adoption 

of water-saving technologies in urban households, especially in the developing world.  The few 

examples that exist in the literature are focused on industrialized countries (Fuenfschilling and 

Truffer 2016; Ward et al. 2012), and have mainly highlighted the institutional conditions and 

governance structures that support sustainable transition to water-saving technologies in the 

urban sector. In developing countries, most of the existing studies have examined the 

economic, social, and sanitary problems associated with the lack of access to water services 
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(Fuente et al. 2016; Whittington and Hanemann 2009; Banerjee and Morella 2011; Jeuland et 

al. 2011; Cook et al. 2016), as well as the implications associated with a change in water tariff 

on access to water by poor households (Nauges and Whittington 2010; Banerjee et al. 2010; 

Whittington et al. 2015; Wang et al. 2005)2.  

A number of policy instruments have been suggested for the residential sector to address water 

scarcity. Instruments range from applying sound water pricing that accounts for scarcity of the 

resource (Dinar et al. 2015; Diakité et al. 2009; Howitt et al. 2002; Howe 2007; Huang et al. 

2010) to implementation water restriction programs (Kenney et al. 2004; Howe and Goemans 

2002) that limit the authorized volume of water use per day. Additional instruments emphasize 

the need to raise awareness through education and capacity building in order to make users 

more cautious about the economic, sanitary, and environmental consequences associated with 

water scarcity. However, another type of non-price demand management approach that has not 

been fully investigated is adoption of water-saving equipment within residential households. 

The very few examples encountered in the literature are from developed countries where public 

authorities provide incentive schemes to encourage adoption of water-saving equipment. Such 

incentives include low-flow toilet rebate programs, and free distribution of plumbing retrofit 

kits offered by the local water agencies in California to mitigate the various droughts 

encountered in the region (LADWP 2015). Other examples are current rebates programs 

offered to households willing to adopt water-saving equipment in Canada and Australia 

(Statistics Canada 2009; Australian Bureau of Statistics 2006). We are not aware of any study 

	
2 A different stream of literature estimates water demand in the developing world (Fercovic et al. 2019; Nauges 
and Whittington 2010; Jimenez et al. 2017; Ojeda de la Cruz et al. 2017), or willingness to pay to access tap-water 
(Whittington et al. 2002; North and Griffin 1993; Nauges et al. 2009; Lauria et al. 1997) or household preferences 
for municipal water services (Vasquez et al. 2011). These are, however, not linked to the purpose of our present 
study. We focus on the introduction of wastewater treatment and water conservation measures in the residential 
sector of a developing country. Most studies about the water conservation measures are focused on the agriculture 
sector (Schoengold and Zilberman 2007; Winters et al. 2004; Bontemps and Couture 2002; Honlonkou 2004; 
Speelman et al. 2010). That is mainly because agriculture captures the bulk of water consumption.   
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that explains the factors that drive adoption of water-saving equipment by households in 

developing countries. This is despite the fact that some developing countries experience severe 

water scarcity.  

The purpose of this paper is to investigate the factors that drive adoption of water-saving 

equipment within urban households in the city Cape Town, South Africa. The city recently 

experienced one of its worse drought seasons3 over the past four decades. Limited rainfall put 

tremendous pressure on water allocation decisions and placed many households in difficult 

situations that require a strict reshaping of water consumption behaviors. We construct a 

theoretical model that builds on disaggregated technology diffusion framework, which 

identifies the diffusion path of a water-saving technology within households. The model is 

tested using choice modeling, where results from latent class analysis (LCA) are compared 

with estimates from both multinomial and conditional logit models. The results of our analysis 

show that key technological attributes (lifespan of the technology and its ease of use by the 

purchaser, the bad smell and likelihood to generate waterborne diseases) can influence 

household adoption decisions. Beyond its academic contribution, our work offers policy 

relevance in guiding public policy decisions that attempt to improve water use efficiency within 

the residential sector in urban settings in the developing world. Despite the fact that Cape Town 

is a relatively well-developed city yet with a high level of inequality, 4 this work can provide 

insights to many cities that experience water scarcity. We show that a combination of 

technological and targeted socioeconomic policies that support education and information 

	
3		The drought was taking place during the writing of this paper. Although the rainfall pattern has improved, the country is still under drought-
management programs. For example, the city of Cape Town has implemented a level 6B water restriction program that limits the volume of 
water allowed for consumption to 50 liters per person, per day. This new measure was implemented to avoid the city’s Day Zero – when the 
city completely runs out of water in its reservoir and no water is coming out of the taps. 
4  By inequality, we mean that a large disparity in wealth is observed between different classes in the city. The city is made up of rich residential 
areas and poor informal settlements. More than half of the informal dwellings in the city are found in the Khayelitsha/Mitchells Plain district 
(134 493 dwellings) in 2017.  
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dissemination about the features of the selected technologies can help enhance adoption of 

greywater technology in urban areas.  

The paper is structured as follows: Section 2 provides an exhaustive review of the existing  

literature. The methodology of this paper is presented in section 3. Section 4 describes the 

different stages undertaken to design the choice of experiments and the data used. The results 

and discussions are presented in section 5. Section 6 concludes the paper and provides key 

policy implications.  

2. Related literature  

The importance of public policy in fostering adoption of more efficient technologies in various 

water-consuming sectors has been widely studied in the economic literature (Katz and Shapiro 

1986; Nelson 1982; Koundouri et al. 2006; Dinar and Zilberman 1991; Hall and Khan 2003; 

Dosi 1982; Edquist 2004; Kerr and Newell 2003; Millock et al. 2012). Existing studies range 

from the energy (Jaffe and Stavins 1994; Jaffe et al. 2003; Li and Just 2018; haq and Weiss 

2018; Versteeg et al. 2017), to the agricultural (Koundouri et al. 2006;  Zilberman et al. 2013; 

Emerick et al. 2016; Sunding and Zilberman. 2001; Schoengold and Zilberman. 2007; Winters 

et al. 2004; Bontemps and Couture. 2002; Honlonkou. 2004; Speelman et al. 2010) and health 

sectors (Hyysalo 2010; Drummond et al. 2013; Faulkner 2009; Buxton and Chambers 2011; 

Dishman 2012). Usually, analysis of technology diffusion highlights two major factors as main 

drivers of adoption of more efficient, superior technologies: technology-push and demand-pull 

(Nelson 1982; Edler and Yeow 2016; Ghisetti 2017; Dosi 1982). Demand-pull assumes that 

technology diffusion remains mainly driven by the demand that emanates from consumers. 

Producers innovate and create a market that supplies those technologies, which match 

consumers’ demands and trigger a technology push.   
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However, it is important to highlight that such clear-cut distinction between demand-pull and 

technology-push hardly reflects the reality of technology diffusion. This has been highlighted 

in Roger (2003) as well as in Hall and Khan (2003), who argued that many technologies are 

disseminated because the right combination of market, governmental and institutional policies 

have been provided, which create incentives for consumers and producers to adopt such new 

technologies. With regard to water-conserving technology in urban setting, as indicated earlier, 

the literature about the factors that drive adoption of water-saving equipment in developing 

countries is very limited. Most of the existing studies are focused on the developed countries 

where access to data is much easier.  

For instance, Renwick and Archibald (1998) developed a theoretical framework that helps us 

understand the extent to which water demand side management (DSM) policies might affect 

residential demand for different classes in Southern California. The theoretical model is tested 

by using a two-stage least square (2SLS) estimation procedure in a natural experiment and data 

collected from 119 single-family dwelling in Santa Barbara and Goleta, California. The 

findings show that adoption of water-efficient garden-irrigation technologies has a positive and 

significant effect on reducing water consumption. The authors argue that policies that aim at 

promoting water conservation measures positively influence probability of adoption of water-

efficient equipment. Campbell et al. (2004) investigate the impacts of various policies (both 

price and non-price water demand side management) on promoting water-saving behaviors and 

adoption of water-saving equipment in Arizona. Data collected from 19,000 households over 

six years were used in a multivariate regression analysis. The results show that even a small 

increase in water pricing leads to adoption of water conservation measures. Their findings 

confirm that even an imposition of non-price policy (rules, increased awareness, and providing 

engineering technologies) may equally lead to a decrease in water consumption and adoption 

of more water-efficient equipment. Geller, Erickson and Buttram (1983) show the positive and 
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significant impact of non-price DSM on reduction in water consumption. The results highlight 

the importance of supporting educational, behavioral, and technological changes within 

households for promoting water-use efficiency. Naugues and Whittington (2010) provide a 

comprehensive overview of the factors that influence water demand in the developing world. 

The study highlights the need for a better understanding of the characteristics of water 

consumers in these underdeveloped countries. The improved understanding is expected to 

encourage a better design and implementation of efficient water conservation measures. Three 

classifications of water consumers are identified in their paper: households with incomes 

ranging between US $150 and $400 per month that can afford municipal piped-water services; 

households in slums with income levels below US $150 per month; and households in the rural 

areas in Sub-Saharan Africa and South East Asia with income levels less than US $30 per 

month. The authors highlight the need to find appropriate and targeted policy mechanisms that 

not only foster an increase in water access but also favor sustainable water consumption. Using 

data collected from urban households in the city of Granada in Spain, Perez-Urdiales et al. 

(2016) evaluate the extent to which water tariff structures influence water consumption. Their 

findings show the need to carefully choose the type of instruments used to induce reduction in 

water consumption. The authors argue that a combination of price and non-price mechanisms 

might help reduce water consumption and promote water use efficiency. Millock et al. (2012) 

develop a theoretical framework that studies the impacts of non-price tax policy on adoption 

of monitoring technology to control stock of externality. Although their study was not referring 

specifically to household water consumption, the underlying theoretical framework provides 

good insight that helps quantify the factors that drive adoption of environmentally sound 

technologies. Renwick and Green (2000) evaluate the impacts of various DSMs on urban water 

resource management in eight water agencies in California, serving 7.1 million people. Their 

targeted policy instruments were water allocations, use restrictions, and public education. The 
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results suggest that targeted policies were effective in inducing water use efficiency in the 

sample areas. However, the magnitude of these changes may be different depending on the 

seasons in which the households experience policy interventions. For instance, responses to a 

price change was 25% higher in summer, reflecting outdoor water consumption associated with 

high temperature. Grafton et al. (2011) show the extent to which implementation of various 

pricing schemes may affect water consumption in 10 OECD countries. Their results show that 

price and non-price mechanisms influence household adoption of water-saving technologies 

and change in behaviors. Millock and Nauges (2010) investigate the factors that drive adoption 

of four different types of water-saving technologies: waterwise washing machine, low-volume 

flush toilets, restrictor taps in water supply, and rainwater collector tanks in 10 OECD 

countries. Their results show that adoption of water-saving equipment remains strongly driven 

by key factors, such as household size, ownership of the property, water pricing, as well as 

degree of sensitivity towards environmental values. Olmstead and Stavins (2009) compare 

price and nonprice approaches to urban water conservation. The paper shows the relative merits 

of market-based and prescriptive approaches to water conservation. The results show that using 

price to manage water demand is more cost effective than implementing nonprice conservation 

measures. However, their paper highlights the importance of including key important factors 

(equity and distributional consideration, political consideration, and the costs of monitoring 

and enforcement) in designing any water-demand management options, especially when it 

comes to adoption of water-saving technologies.  Table A.1 in the appendix presents a more 

exhaustive list of previous studies that investigated the impacts of socioeconomic and 

attributional features on adoption of water conservation practices.  

Our paper contributes to the current discussion on factors that drive adoption of water-saving 

technologies by using empirical evidence from a developing country. Rapid population growth 

and rural-to-urban migration observed in the developing countries, combined with poor quality 
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of water supply infrastructures and weak regulatory capacity have led to situations in which 

urban dwellers may find it more appropriate to respond to water-demand management 

measures that reduce volume of water consumption within the household, especially through 

adoption of water-saving equipment.  

The city of Cape Town faced a water-crisis situation that was brought on by three consecutive 

years of insignificant rainfall. In January 2018, Cape Town city officials announced that the 

reservoir serving 4 million people was three months away from running out of municipal water. 

That water crisis was coined “Day Zero.”  City inhabitants were requested to drastically cut 

their water consumption in order to reduce the risk of having no running water from their taps. 

Was that a sufficient “threat” to induce changes in the behavior of household water 

consumption, including adoption of water-conserving technologies?  

The underlying hypothesis of this paper is that adoption of water-saving technologies may help 

households reduce the volume of water consumption, allowing the city of Cape Town to meet 

its water budget. The selected water-saving method referred to throughout the paper is 

greywater technology. Greywater is usually consists of wastewater coming from baths, 

showers, kitchen sinks, and washing machines. It contains lower concentrations of microbial 

contents and chemical characteristics than sewage water (Roesner et al. 2006). Previous studies 

show that usage and treatment of greywater by households and communities allow not only a 

reduced demand for freshwater, but it also saves in public expenditures by centralized 

wastewater treatment plants (Gross et al. 2005; Jefferson et al. 1999; Wiltshire 2005; Morel 

and Diener 2006; Carden et al. 2007). This paper targets two widely used greywater 

technologies: stand-alone greywater tank (technology 1), and a sophisticated and integrated 

system of greywater that is connected to the toilet, and can be used to flush the toilet instead of 

using potable water (technology 2). Both technologies are used to collect, store, and treat 

greywater from various sources within the household (bath, kitchen, washing machines, 
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showers, etc.). The difference between the two is as follows: technology 1 is not connected to 

the plumbing structure that is linked to the toilet, whereas technology 2 is. Therefore, with 

technology 1, the collected greywater is treated and transported to the end-use point, whereas 

technology 2 only treats the greywater and returns it to the system. Treatment consists of a 

combination of anaerobic and aerobic processes with disinfection options that eliminate 

esthetic, health, and other problems that are caused by organic matter, pathogens, and solids, 

and they meet reuse standards. These technologies are currently being manufactured in Cape 

Town, South Africa.  

3. Methodology  
 

3.1. Theoretical model of diffusion of water-saving technology 

The proposed methodological framework builds on the disaggregate technology diffusion 

literature to account for consumer heterogeneity impacts on adoption of a new technology. We 

introduce a simple theoretical model that explains the diffusion process of water-saving 

technology within urban households. Our theoretical approach builds on Bass (1969) but 

extends it by introducing assumptions that allow us to capture the characteristics of different 

types of urban households. Let’s assume that adoption of greywater equipment within a 

household is a function of innovation (p > 0) and imitation (q > 0).  Equation (1) shows the 

probability of diffusion  of the new technology, when p and q are exogenous:  

,   (1)
 

p and q represent the parameters that capture the desire of certain individuals to innovate and 

to imitate, respectively. Innovation refers to the desire that some households have to install and 

experience (innovate) new water-efficient technologies in their homes. Whereas imitation 

refers to those households that have installed such technology only after having observed that 

Pt

Pt = p−
q
M
B ...( )
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their neighbors have previously adopted water-saving technologies. The latter type of 

household is supposed to imitate the former one. Arrow (1962) refers to this classification as 

the first mover and the follower, respectively. M is a parameter that captures the potential 

market share of the technology and B(…) is the cumulative number of people that are willing 

to adopt the technology.  If we define f(t) as the likelihood of purchase at time t, with   
  

 and F(0)= 0, Equation (1), the probability of adoption, can be transformed 

into Equation (2), following Srinivasan and Mason (1986) . 
 

.   (2)
 

In the early Bass (1969) model, the cumulative function B(…) has been considered linear, 

despite the fact that diffusion of new technology hardly takes place in an environment that is 

stable, linear, and unchanging. Mansfield (1985), for instance, argued that diffusion of a 

technology is driven by a combination of factors, such as risk profile of the adopters, their level 

of income, and the institutional settings in which they operate. We follow Mansfield (1985) 

and argue that elements such as risk profile might also affect the extent to which a technology 

gets diffused within a society. When a new innovation is introduced, it has been shown that 

rate of adoption might differ between not only rich and poor households (Khan and Ravikumar 

2002), but also between potential adopters with different risk profiles (Foster and Rosenzweig 

2010). We account for the risk profile of the potential adopters and assume a cumulative 

function that includes a parameter  that captures that risk profile. Individuals are risk-neutral 

when , and risk-averse when  . Therefore, assuming that   

and taking into account Equation (2), we determine the likelihood of purchase of greywater 

technology at time t. This likelihood is represented in Equation (3): 

F t( ) = f τ( )dτ
t=0

T
∫

Pt =
f t( )

1−F t( )
= p+ q

M
F t( )

µ

µ =1( ) µ = 0( ) B( ) =M 1+ 1
µ

!

"
#

$

%
&F t( )
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    (3) 

with .                          (4) 

Finally, let’s assume the existence of a state variable   that captures the evolution 

of sales of the new technology. Transformation of Equations (1-3) leads to Equations (5) and 

(6):   

   (5) 

!(#) = & '( − !
!"#* +(#) +

#
#"! -+

$(#)       (6) 

The intuition behind (5) and (6) is straightforward. The evolution of sales of water-saving 

technology is a function of the risk profile, the innovation and imitation coefficients and the 

cumulative function, B. It is important to highlight that the dynamics of B(t) satisfied Ricacati 

principle.5 Successful diffusion of the technology must account for these features to ensure that 

consumers adopt the proposed technology. Therefore given Equation (6), if one assumes a 

solution B (t), the standard transformation property provided in Hille (1969) shows that 

 remains another linear and independent solution of the same Riccati equation, where 

 satisfies the linear ordinary differential equation below:  

.  (7) 

	
5  The FOC remains non-linear (i.e. quadratic).  

f t( ) = p+ q 1+ 1
µ
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Therefore any given solution of the Riccati equation presented in Equation (7) is a Liouvillian 

solution, which is by using the boundaries solutions. Figures 1 and 2 below show the evolution 

in the sales of the technology, under different scenarios of risk attitudes (.) and market shares 

(M). In Figure 1 sales in technology (in percentage) vary as a function of the risk profile of the 

households ., which represents the X-axis. One can observe that higher risks with regards to 

certain attributes of the technology reduce probability of adoption. For instance, a decrease in 

the distribution in adoption is observed, as sensitivity towards risks increase.  Three curves  

(Red:  . = 0.03; Yellow:  . = 0.09;	Green: 	. = 0.15) are portrayed to capture various sale 

percentages, according to different risk-profiles. Two effects can be identified: a scale effect 

that influences the magnitude of the sales reached, and a distributional effect that changes the 

repartition in terms of access to the technology. On the other hand, the influence of market 

share M (x- axis in Figure 2) is determined by a combination of different factors – those 

associated with the technology (attributes), as well as those that are associated with the 

socioeconomic characteristics of the potential adopters. The empirical evidence below helps 

explain those factors. 

3.2.  Empirical strategy  

The previous theoretical framework is used to construct a standard latent class discrete-choice 

model with covariates. Our model consists of (S) different behavioral classes that represent 

different groups within the population. Classes are determined based on two criteria: BIC and 

AIC. Regrouping potential adopters into different classes accounts for heterogeneity between 

responders, and to investigate the extent to which different parameters estimated across classes 

may be compared. Additionally, this can be very useful for policy intervention. Better 

knowledge about specific characteristics that shape household behavior helps tailor public 

interventions that attempt to promote widespread adoption of water-saving technologies.   
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Figure 1: evolution of sales when 7 varies 

	

	

	

	

	

	

	

	

	

	

	

 

Figure 2: evolution of sales when M varies  
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3.3  Latent class analysis 

Latent class analysis (LCA) is used in this work to account for preference heterogeneity and to 

release the restrictive assumption of IID of error terms, usually hypothesized under a number 

of discrete choice techniques, such as multinomial logit. The underlying argument, supported 

by economic stylized facts is that consumers who belong to the same class (such as education, 

income) tend to have the same behavioral patterns (Swait 1994; Hess and Rose 2009; Gupta 

and Chintagunta 1994). LCA, in contrast to multinomial logit (MNL) model, assumes that a 

discrete number of classes are sufficient to account for preference heterogeneity across classes 

(Hess 2014). Hence, the unobserved heterogeneity is captured by these latent classes in the 

population, each of which being associated with a different parameter vector in the 

corresponding utility. Therefore in our model of (S) classes 8%(9 = :, … . , !)  specific 

parameters would be estimated with the possibility of some 8% remaining constant across some 

of the classes. However, it is important to emphasize that additional techniques could also be 

used to account for preference heterogeneity. For example, one can relax the assumption of 

homogeneous preferences and include interaction terms between individual-specific 

characteristics and case-specific attribute levels. This approach accounts for the influence that 

sociodemographic and attitudinal characteristics have on preferences, but it does not relax the 

potentially unrealistic assumptions of independence of irrelevant alternatives (IIA) and 

uncorrelated unobserved error over time. An alternative approach that exists is a random 

parameter model (RPM). RPM assumes that preference parameters are randomly distributed 

across the population and, as a result, model parameters vary randomly across individuals. A 

recent development in the econometric techniques allows to perform LCA. The technique is 

also used to account for attribute non-attendance (ANA), in which responders ignore one or 

more of the attributes when making their choices. LCA accounts for preference heterogeneity 
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by simultaneously estimating probability of class membership and preference parameters, 

based on individual characteristics. The technique uses a probabilistic class allocation model.  

Based on AIC and BIC criteria, three different classes were identified: (i) risk averse, (ii) 

innovators, and (iii) supporters of greywater technology. The class “risk-averse” is made of 

responders who believe in the occurrence of Day Zero. Risk-averse households are responders 

who trust the city officials and think if no action is taken the city will run out of water. 

Therefore, this implies that the public campaign by the city has influenced their beliefs. The 

class “innovator” refers to households that have already (at the time of the survey) adopted 

greywater technology. Finally, the last class, “supporters of greywater technology,” is made up 

of households that think in-house treatment of greywater must be allowed through 

implementation of specific legislations. This last group is expected to adopt the technology in 

the future. Households within that group have an inherent belief system that supports 

dissemination of greywater technologies. 

Following the above classification we use the random utility theory framework to determine 

the socioeconomic and attributes that influence adoption of water-saving practices. Let’s 

assume that individual i belonging to class s has a utility =%& that is derived from adoption (j = 

1) or non-adoption (j = 0) of greywater treatment technologies. Examples of positive utility 

provided by adoption of such technologies are reduction in global water consumption, reduced 

water bills, and lower reliance on water supplied by the municipality for non-potable water 

consumption within the households. This formulation is a typical representation of a random 

utility model (RUM) that has deterministic and random components (Lancaster 1966) for each 

class. The functional form of the utility function is given in Equations (8) and (9) below.  

    (8) 

with  

Uin/s =Vin/s +εin/s
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,               (9) 

 

where V, represented by >?@%'(; 8&; A%)B, is a function of the water-saving technology attributes 

of alternative n faced by individual i; Xinj is the matrix of attribute levels for the new greywater 

equipment;  the vector of individual characteristics, and   the vector parameters specific 

to the selected class. After having observed Xi, Yi and Zi, the class likelihood (s) is determined 

as follows in Equation (10):  

 ,
 

where represents the probability that an individual i belonging to class s, and 

 is the probability of observing a response from individual i to the choice set, 

conditional of her belongs to class s 

Finally, we estimate the marginal effects of each attribute in order to allow our results to be 

more policy relevant. Equation (11) represents the willingness to pay (WTP) for the greywater 

technology:  

   (11) 

 

Although latent class analysis (LCA) is the main methodology of the paper, we also run 

multinomial logit (MNL) and conditional logit (CL) models. This allows us to compare our 

result with a baseline scenario that does not capture heterogeneity between responders. 
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4. Design of the choice experiment  
 

4.1:  Design of the attribute space 

The selection of attributes included in the survey has important implications for the results of 

the choice experiment. We rely on the previous literature to identify the factors that drive 

adoption of new technologies within households. Table 1 provides an overview of the attributes 

and the attribute levels considered. Previous studies highlight the lifetime of the technology as 

one of the major factors that influence adoption of technology (Comin and Habijn 2010; 

Ahsanuzzaman 2015). Households are more willing to adopt new equipment that is perceived 

to be reliable and have longer lifetime. The two levels of this attribute are: short, and long term. 

The second attribute identified was ease of use, which is perceived as an important determinant 

in technology adoption. For quite a number of technologies, diffusion has not been widely 

observed because potential adopters find it costly and time-consuming to acquire skills that are 

needed to use the technology (Mukoyama 2004; Bartel and Lichtenberg 1987; Doms et al. 

1997). Beyond learning cost and time spent at the early stage of adoption, ease of use 

encompasses any effort made to run, repair, and maintain the selected technology at its best 

standard. Two levels are selected for the second attribute: easy (when no extra training is 

required before usage of the technology), and difficult (when intensive pre- and post-usage 

training is necessary for a well-functioning technology). Technology adoption is also driven 

by externalities associated with the usage of that technology. After consultation with water 

policymakers in the region, we include two plausible externality effects: smell, and health-

related externalities. Some greywater treatment technologies release a smell, which affects not 

only the household in which the technology is installed, but also the neighboring households. 

Many different cases are observed in which neighbors complain about the bad smell coming 

out of greywater systems installed in their surroundings. Two levels are assigned to each of 

these attributes: low and high (for smell) and high-risk and safe (for health-related 
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externalities), respectively. Health-related externalities (waterborne diseases, trauma, and 

discomfort) can result from a bad smell or any physical contact made with the greywater 

without having taken precautionary sanitary measures. Several studies have shown the extent 

to which health-related benefits drive adoption of some technologies (WHO, UNICEF 2017; 

Drummond et al. 2013; Faulkner 2009; Buxton and Chambers 2011; Dishman 2012). Finally, 

costs were introduced as an attribute to account for the technology. In addition to our literature 

review, we conducted several focus group discussions (FGDs) with water policymakers, 

private companies that design greywater treatment technologies, and selected households. 

Participants of the FGDs were recruited through their local  associations or non-government 

organizations (NGOs). We conducted a series of workshops with policymakers and local 

authorities who assisted us in recruiting the participants. A total of four FGDs were conducted 

in different locations, making sure that participants came from different segments of the 

society, namely, low-, middle-, and high-income groups. On average, each FGD had 12 

participants in total and four participants were invited from each segment. Through FGDs, we 

were able to develop a localized understanding of important concepts associated with attributes 

and a way to convey them to the respondents. All the identified attributes were discussed with 

these stakeholders, and they were validated by the experts. The expert group was composed of 

researchers and officials from the municipality in Cape Town.   
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Table 1: Definition of attributes and their levels 

Attributes  Definition and attribute levels  Levels of attributes  

Lifetime of the technology This indicates the number of years 
the technology can be used within 
households.  

Short: less than 5 yrs. 

Long: 15 years.  

Ease of use This refers to whether the 
technology is easy to use with no 
prior training required. However, 
training becomes mandatory if the 
technology is difficult to use. 

Difficult: when very 
sophisticated and intensive 
training is needed before 
and after installment of the 
technology  

Easy: when no extra 
training is required before 
usage of the technology 

Bad smell (negative 
externality) 

This indicates the likelihood of the 
technology to produce a bad smell 
during its usage. This disturbs 
household and neighbors  

Low: selected greywater 
technology emits some 
smell when installed, but the 
smell is acceptable and can 
be treated by using basic 
chemical products. 

High: The installed 
technology carries strong 
smell. But the smell is not 
dangerous for human health.  

Possibility to engender 
diseases when in contact 
with greywater 

This captures the technical 
inefficiency that is associated with 
the design of greywater treatment 
technology.  

High: greywater treatment 
could carry waterborne 
disease, when in contact 
with the wastewater. 

No disease: the wastewater 
is treated and there is no 
waterborne disease 
associated with the usage of 
the wastewater 

Costs Cost of purchasing a technology R5,000; R10,000; R15,000; 
R20,000; R25,000 

US $1  = 14.5 ZAR 
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4.2: Experimental design 

The main objective of experimental design in choice experiments is to develop designs that 

yield efficient and unbiased estimates of preference parameters and value estimates (Johnston 

et al. 2017). Table 2 provides an example of the choice experiment scenarios that were 

presented to the respondents. With four attributes varying across two levels each, and one 

attribute varying across five levels, there were 80 (24×51) possible combinations of the 

attributes and their levels. In order to minimize bias, a full factorial orthogonal design of 24 

alternative profiles was created using NGENE6 from the full set of possible combinations. The 

number of alternatives is informed by the literature review and is based on the frequently used 

number of blocks and choice sets for a design similar to the one being considered in this paper. 

The software produced an efficient design with one status quo and two non-status quo 

alternatives per choice set, and four choice sets arranged in six survey blocks/cards. Each 

choice set presents the characteristics of the technologies.	 Respondents were randomly 

assigned one of the six survey blocks/cards which had been prepopulated in six different 

questionnaire versions.  

 

 

 

 

 

	
6	The program is an intellectual property of ChoiceMetrix (www.choice-metrics.com).  
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Table 2: Sample of choice set  

Attributes  Technology 1: surface 
tank that collects and 
stores wastewater for re-
usage), but not 
integrated to the toilet 

Technology 2: Underground tank that collects 
and stores wastewater, and is connected to the 
toilet. This wastewater can be directly used to 
flush the toilet without using buckets to 
transport the wastewater.  

Lifetime  Short  Long  

Ease of use  Easy (no training required, 
maintenance at low 
transaction costs) 

Difficult (frequent trainings required and high 
transaction costs) 

Smell  High  Low 

Waterborne 
diseases  

No disease  High  

Costs  5,000 ZAR 25,000 ZAR 

 

4.3:  Survey design 

Stated preference (SP) studies should elicit evidence that pieces of information are understood, 

accepted, and viewed as credible by respondents (Johnston et al. 2017). To elicit household 

preferences for attributes, the study used a survey-based choice experiment. The survey method 

allowed enumerators to convey the message and explain difficult concepts. The questionnaire 

had various sections on socioeconomic characteristics of households and a choice experiment 

composed of the alternative policy scenarios, including the baseline. As part of the introduction 

to the survey, respondents were told that the city of Cape Town is planning to introduce water 

conservation measures in response to water shortages as a result of frequent droughts. As part 

of the water conservation measure, city authorities will disseminate information about various 

water-saving technologies available on the market and supply them to buyers at a cost. Since 

dissemination of technologies has other cost implications for both the supplier and the buyers 

themselves, such as information cost, the city will bear most the burden associated with the 



	 23	

cost of getting information in order to cushion its customers. This cost is accounted for by the 

attributes. With respect to this, the respondents were asked to pay a once-off levy to the city in 

exchange for a water-saving technology of their own choice.7 The respondents could choose to 

maintain the status quo and pay nothing. The status quo represents the current situation of the 

household, i.e., what they are doing now, whether they have a technology installed or not. The 

payment vehicle selection was informed by pretesting to minimize unintended effects on value 

estimates (Johnston et al. 2017).   

Respondents were then presented with a series of choice alternatives, differing in terms of their 

attributes and levels, and asked to choose their most “preferred water-saving technology” 

among a range of alternatives presented to them. Five undergraduate students were recruited 

from the University of Cape Town as enumerators, and a two-day training session was 

administered in order for them to internalize the information being conveyed by the choice 

sets. As recommended by Johnston et al. (2017), a pilot study was also conducted on the third 

day in an area not selected for the main survey as part of training to ensure that the respondents 

understood the attributes and to refine the survey instrument. 

To facilitate the interview, we provided each respondent with a separate fact card describing 

the attributes in English. Each option in the choice set provided respondents with different 

attributes of a technology (e.g., a technology with a short lifetime, easy to use, with high 

likelihood of generating a bad smell or disease). Due to the subjective nature of verbal 

description and to ensure that respondents have a common understanding of the subject matter, 

each technology was visualized through digital manipulation of a control picture. This was 

made to insure that different types of technologies and changes in the attribute levels were 

	
7 The decision context dictates that a willingness to pay (WTP) measure could be more appropriate as opposed 
to a willingness to accept (WTA), since we are not dealing with losses or damages. 
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easily illustrated without biases that may have arisen from differences in the respondents’ 

levels of education. 

4.4: Data   

The data were collected in Cape Town, South Africa. Various districts of the city were sampled 

to account for various important characteristics of the city. We collected data from 465 

households in April 2018.8 A team of eight enumerators was recruited and spread around the 

city. Areas from the Southern (Plumstead, Rondebosch, Kensington, Wynberg, Southfield), 

Central (Goodwood, Maitland) and the Northern (Brackenfell, Northpine, Oakdale) parts of 

Cape Town were randomly selected. We obtained information about the households and streets 

in each suburb from the city authorities. Each day, a street name was randomly selected and 

allocated to a designated enumerator. Thereafter, a systematic random sampling was applied 

by the enumerator to identify and select the next respondent by skipping households according 

to a sampling interval (n), computed as the total number of households in a given area, divided 

by the sample size in that area. For instance, when the number of questionnaires required in a 

specific area were not received, enumerators were instructed to make a left turn before they 

reached the end of the street and continue. Alternatively, we instructed enumerators to request 

a different street name to be randomly generated from the office. Figure A.3 in the appendix 

presents the areas that have been surveyed. Table 3 shows the summary statistics of the selected 

variables. The data was captured such that each individual was entered 12 times to include the 

choices they made for three options and four different choice sets. Responders averaged 53 

years of age, and their average number of years in school was 13. A greater proportion (62%) 

of the sample was composed of male respondents. Quite a significant proportion (46%) of the 

respondents did not believe that Day Zero actually exists.  

	
8 This period corresponds with a severe drought in Cape Town and the scheduled Day Zero was a few days ahead 
of the interviews  
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Moreover, the average income is R17048.83 (US $1,183) per month, while the average water 

bill is R159.30 per month. The average cost of a technology is R9732.30, based on market 

prices collected at the time of the survey. We observed a great variability associated with 

income and technology cost, suggesting that most of the responders were middle aged, 

educated up to matric level, and belonged in the middle-income category. The alternative 

specific constant (ASC) in Table 3 commonly reflects the status quo bias, and it measures the 

difference between status quo and non-status quo alternatives.  

 

Table 3: Summary statistics 

Variable Obs Mean Std. Dev. 
School Years 5,580 13.47 3.58 
Gender 5,580 0.62 0.49 
Day Zero 5,580 0.54 0.50 
Innovators 5,580 0.10 0.30 
Risk Adv 5,580 0.89 0.31 
Support 5,580 0.85 0.36 
ASC 5,580 0.33 0.47 
Water Bill 5,580 159.30 237.00 
Ce Cost 5,580 9732.00 8906.00 
Income 5,580 17048.83 14120.90 

 

5. Results and discussion 

We start by analyzing the results of the CL and MNL together, and we then proceed to discuss 

the LCA results. Table 4 represents the results of the conditional logit (CL) and the multinomial 

logit (MNL) models with and without interaction terms. The models with covariate interactions 

were run to evaluate the effects of individual characteristics on technology preferences. Table 

5 presents the results of the LCA model. According to the measures of good fit (AIC and BIC 

criteria), the LCA model provides a better fit to the data than the CL and MNL models. 
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However, we will discuss the results of all the models, because they introduce different flavors 

to the analysis.  

5.1:  CL, MNL, MNL-interaction and CL-interaction results 

The specification of the CL and MNL uses the attribute levels and the ASC to explain the 

alternatives selected by responders in the choice sets (Vermunt et al. 2008). The coefficients in 

the CL and MNL models are all statistically significant at the 1% level. The signs of the 

attributes lifetime and disease are consistent with expectations, whereas the sign of bad smell 

despite being significant is not consistent with expectation. We expect households to consider 

bad smell as a negative externality, which decreases the probability of adoption. However, 

households may still choose greywater-saving technologies, although they generate a bad smell 

during their use, as long as the technologies contribute at saving water and hence reducing the 

water bill. Therefore, despite their ability to generate bad smell, greywater technologies still 

remain an appealing water-saving strategy in the study areas. This is supported by the fact that 

adoption of greywater can be combined with utilization of chemical scrubbers (gas and liquid 

oxidation, carbon/permanganate absorption, FeCI3 addition, etc.) that allow a mitigation of the 

negative effects associated with bad smell in order to reduce the odor sources within the 

household. Another alternative is using underground greywater conservation tanks, which limit 

(neutralizes) the effects that the smell has on the household and the neighborhood. The positive 

coefficient of ASC in the base model is statistically significant, suggesting a significant status 

quo effect. The results show that ease of use is significant at 1% with expected sign of the 

coefficients.  

In both the CL and MNL interactions model, Easyuse, Badsmell, and Disease are statistically 

insignificant. Lifetime is statistically significant and has the expected sign of the coefficients. 

In these models, the coefficients on choice attributes represent the preferences of base-case 
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responders. By assumption, the base-case might represent responders who prefer a technology 

with a relatively longer lifespan, that is easy to use, that has a very low likelihood of generating 

bad smell and diseases at an affordable cost. As with the base-case models, the interactions 

models have a positive and significant ASC, indicating that responders had a preference for the 

status quo option, regardless of the change in the levels of the attributes. Therefore, these results 

show the importance of key attributes in explaining adoption of greywater technology within 

households.  

The coefficients of the interaction terms describe the effects that individual characteristics have 

on preferences for each attribute. The significant negative coefficient on Innovators × Lifetime, 

Gender × Disease, Waterbill × Easyuse, and Income × Cost indicate that early adopters prefer 

technologies that are less difficult than late adopters. Women are more sensitive to technologies 

that have a high probability to generate diseases than men. Responders who believe that 

greywater helps to reduce the water bill prefer relatively easy technology than their 

counterparts. The significant and positive coefficient for Support × Cost, Gender × Cost, 

Waterbill× Badsmell, and Income × Lifetime indicate that greywater supporters are less 

sensitive to changes in costs associated with investment in water-saving technologies than non-

supporters. Men are less sensitive to costs than women, those who believe that the use of 

greywater technologies actually reduce a water bill do not care much about bad smell than 

others (as explained earlier). However, those with higher incomes seem to care about the 

lifespan of the technology than responders with lower incomes. 
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Table 4: Results of the MNL and CL (with and without interaction) 

 Base CL CL Interaction Base MNL MNL Interaction 

 Coefficients Std. Err. Coefficients Std. Err. Coefficients Std. Err. Coefficients Std. Err. 

Lifetime 0.46*** 0.08 0.43** 0.19 0.62*** 0.08 0.58*** 0.21 

Easyuse  0.20*** 0.07 -0.06 0.20 0.26*** 0.08 -0.003 0.22 

Badsmell  0.13** 0.06 0.10 0.21 0.17*** 0.06 0.19 0.23 

Disease  -0.21*** 0.07 -0.217 0.21 -0.27*** 0.07 -0.13 0.23 

Cost -1.16e-05  7.76e-06 -4.65e-05*     2.63e-05         -1.47 e-06*  8.57e-06 -4.67e-05* 2.92e-05 

ASC 1.73*** 0.60 1.7*** 0.61 2.40*** 0.64 2.44*** 0.66 

Innov × Lifetime   0.01 0.11   0.01 0.12 

Innov × Easyuse   -0.19* 0.11   -0.24* 0.12 

Innov × Badsmell   -0.04 0.12   -0.05 0.13 

Innov × Disease   0.16 0.13   0.22 0.14 

Innov × Cost   3.22e-06    1.57e-05           4.73e-06    1.78e-05         

Riskadv × Lifetime   0.04 0.11   0.06 0.12 

Riskadv × Easyuse   0.13 0.12   0.14 0.13 

Riskadv × Badsmell   0.07 0.13   0.07 0.14 
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Riskadv × Disease   0.04 .13   0.01 0.14 

Riskadv ×	Cost   -1.33 e-05       1.59 e-05          2.10e-05       1.76e-05           

Support ×	Lifetime   -0.015 0.09   -0.02 0.18 

Support × Easyuse   0.07 0.10   0.08 0.12 

Support × Badsmell   -0.15 0.10   -0.19* 0.11 

Support × Disease   -0.01 0.11   -0.02 0.12 

Support × Cost   2.62e-05*        1.40e-05               3.11e-05**       1.56e-05            

Gender × Lifetime   -0.01 0.06   -0.01 0.07 

Gender × Easyuse   0.01 0.07   0.01 0.07 

Gender × Badsmell   0.04 0.07   0.04 0.08 

Gender × Disease   -0.13* 0.07   -0.19** 0.08 

Gender × Cost   2.56e-05**             1.00 e-05               3.12e-5*** 1.56e-05      

Schoolyear × Lifetime   -0.01 0.01   -0.01 0.07 

Schoolyear × Easyuse   0.01 0.01   0.01 0.01 

Schoolyear × Badsmell   -0.0042 0.01   -0.01 0.01 

Schoolyear × Disease   -0.005 0.01   -0.01 0.01 

Schoolyear × Cost   1.40e-06    1.41e-06        -1.84e-07    1.59e-06     
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Waterbill × Lifetime   -4.00e-05 1.4e-04   -5.6e-05       1.65e-4 

Waterbill × Easyuse   -2.8e-05** 1.30e-04   -4.18e-4*** 1.59e-4 

Waterbill × Badsmell   2.4e-04* 1.4e-04   3.03e-4* 1.62e-4 

Waterbill × Disease   1.91e-04    1.46e-04      1.97e-4 1.66e-4 

Waterbill × CostA   1.72e-08    1.94e-08        1.78e-08    2.24e-08 

Income × Lifetime   5.18e-06**    2.48e-06        6.71e-06**    2.91e-06 

Income × Easyuse   2.04e-06    2.62e-06        1.18e-06    3.04e-06      

Income × Badsmell   4.29e-06*    2.66e-06        4.76e-06    3.06e-06      

Income × Disease   5.00e-06 *   2.77e-06        4.04e-06    3.15e-06      

Income × Cost   -8.06e-10**    3.49e-10       -1.40e-9***    3.97e-10     

Log-likelihood -1845.89 

3703.786 

3743.544 

5,577 

-1793.71 

3667.42 

3932.47 

5,577 

-3273.80 

6561.61 

6608.00 

5,580 

-3224.94 

6531.89 

6803.60 

5,580 

AIC 

BIC 

Obs 

* p < 0.10.  **p< 0.05.  *** p <0.01. 
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5.2: Latent class model 

The specification of the LCA model was performed using all of the variables that appear in the 

CL and MNL interactions models. Out of all model specifications, a three-class model was 

selected as the best specification based on AIC and BIC criteria. As shown in Table 5, the 

coefficient on Badsmell, Cost and ASC for class 1 are statistically significant. The coefficients 

for Easyuse and Cost are significant for class 2, while the coefficient of Easyuse, Badsmell, 

Disease, and Cost are highly significant for class 3. There is consistency on the sign of the 

coefficients for Easyuse, Badsmell, and Diseases for all classes except for Cost in class 3. 

Class 1 has the least class membership and accounts for 15% of responders. Class 1 

characterizes responders who think that adoption of greywater technology would contribute to 

reduced water scarcity and postpone occurrence of Day Zero. For that class, adoption of water-

saving equipment is naturally perceived as a tangible option that could help mitigate water 

crisis, alongside other water-demand management options. This class is labeled as risk averse. 

The class has the youngest (52 years) members and relatively more women (41%). Our study 

supports other studies that find women to be more risk averse than men (Charness and Gneezy 

2012). Our results show women have a strong preference for change away from the status quo 

(negative and significant ASC). The mean willingness to pay for Badsmell and Diseases are 

higher for class 1, suggesting that members of this class put more weight on Badsmell and 

Diseases. Relative to classes 2 and 3, members of class 1 are significantly less likely to adopt 

technologies that yield Badsmell and Diseases. Relative to members of class 2, they are also 

significantly less likely to innovate or to be leaders in technology adoption.  

Class 2 has the largest share of responders with 49% and, by default, it is used as the reference 

class. Determinants of class membership for the other alternative classes are interpreted with 

respect to class 2. Members of class 2 are the innovators and leaders in using water-saving 



	 32	

technologies. During our experiment, these were members who already adopted greywater 

technologies before our survey was administered. Members of class 2 are mature (56 years), 

slightly more educated (13.7 year of school) than the mean, and composed of fewer women 

(26%), compared to other classes. The household marginal MWTP for Lifetime (527.79) and 

Easyuse (-1426.69) are higher for class 2, suggesting members of this class care about the 

lifespan and ease of use of the technology (Table 6). The ASC is not significantly different 

from zero, suggesting the absence of status quo bias, and members in class 2 are indifferent 

between the status quo and other alternatives. This seems to suggest that members of class 2 

might view greywater technologies as an appealing water-saving strategy, if benefits are 

greater than the costs of adopting the technology.   

Class 3 is the second largest of the classes, representing 35% of responders. They have been 

labeled “greywater supporters.” This class characterizes responders who support initiatives that 

facilitate adoption of greywater technologies. Members of class 3 are mature (54 years), and 

women constitute 37%. Again, the ASC is not statistically different from zero, suggesting the 

absence of status quo bias. This suggests that members of class 3 were indifferent between the 

status quo and moving away from it. Class 3 has the least MWTP for all attributes (Table 6). 

The positive and significant cost coefficient in this class suggests that responders were ignoring 

the cost associated with each alternative, or selecting alternatives with higher cost with all else 

held constant. Although this is not consistent with expectations, the explanation could be that 

greywater supporters were willing to adopt any technology that can reduce household demand 

for freshwater to prevent a water crisis. This may be because the publicity provided by officials 

about the likelihood for the city to run out of water has contributed to rising concerns about 

future water crises.  
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Table 5: Latent class analysis (LCA) results 
 
 Class 1 (Risk Averse) Class 2 (Innovators) Class 3 (Supporters) 

 Coefficients Std. Err. Coefficients Std. Err. Coefficients Std. Err. 

Marginal utilities 

Lifetime -0.06 0.36 0.68 0.22 0.98 0.13 

Easyuse  -0.19 0.32 0.25*** 0.209 0.60*** 0.11 

Badsmell  0.44* 0.25 -0.29 0.18 0.21*** 0.09 

Disease  -0.29 -0.31 -0.17 0.189 -0.12** 0.10 

Cost -0.0004*** 0.00005 -0.00015*** 0.00002 0.0001*** 0.000013 

ASC -5.36** 2.60 2.37 2.37 1.66 1.00 

Class membership parameters 

Innovators   -0.04 0.13 -0.09 0.13 

Risk Averse   -0.51*** 0.14 -0.19 0.15 

Supporters   0.03 0.11 0.22* 0.12 

Gender   0.18** 0.07 0.54*** 0.08 
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Constant   1.50*** 0.14 0.48*** 0.16 

Posterior membership probability 15.27  49.46  35.27  

Log-likelihood -130.98                     -331.22                    -395.27  

AIC            273.96    674.44    802.5464      

BIC 302.45  709.97  836.055  

Obs 852  2,757  1,968  

* p < 0.10.  ** p< 0.05.  *** p <0.01.
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5.3: Marginal willingness to pay and aggregate willingness to pay   

When we consider the marginal willingness to pay (MWTP) across models, we observe that 

both the CL and MNL base-case models have the highest MWTP for Lifetime, Easyuse, and 

Badsmell, while the LCA has the highest MWTP for Disease. Mean MWTP for Lifetime, 

Easyuse, and Badsmell are higher in the CL/MNL base model, while the mean MWTP for 

Disease is higher in the MNL interactions model. Overall, Lifetime has the largest MWTP, 

followed by Easyuse, and Badsmell. In general, responders had a negative MWTP in all models 

for a technology that is likely to generate Disease. This is not necessarily true when we consider 

the mean MWTP across classes for a technology that generates Disease as in class 1 and class 

3. It makes sense for both classes to have positive values, since the innovators and supporters 

of greywater have a higher likelihood of finding new or innovative ways to neutralize the 

negative externality associated with usage of greywater. What is more important is adoption of 

wastewater conservation practices that contribute to reducing the expenditures on Waterbill, 

which in turn is expected to prevent water scarcity.  

According to the three measures of goodness of fit (log-likelihood, AIC, and BIC), the LCA 

model provides a better fit to the data, followed by the CL models and, finally, the MNL 

models. For ease of exposition, we eliminate the MNL models and compare estimates of 

aggregate MWTP from the LCA, CL interaction, and CL base models in Table 6. All the 

attributes carry negative signs in the LCA model. The CL base model has positive signs for all 

attributes but Disease, while the CL-interaction model has negative signs for Easyuse and 

Disease, and positive signs for Lifetime and Badsmell. All the models converge on the negative 

sign of Disease.  

Since the LCA provides a better fit, the remainder of the discussion focuses on the results of 

the LCA model. The mean annual household MWTP for each attribute is aggregated for the 
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3.8 million households in Cape Town (STATS SA 2018) that were sampled to represent the 

study area. This is then multiplied by the figures in Table 6 for the LCA. The LCA produced 

higher mean MWTP estimates for Disease (-R45 068 000), followed by Lifetime (-R5 337 670 

000), Easyuse (-R5 582 162 000) and, lastly, Badsmell (-R5 992 296 000). The signs of the 

MWTP for Lifetime and Easyuse are not consistent with theory. The MWTP values for Disease 

and Badsmell are negative, indicating a MWTP for decreases (or to avoid increases) in the 

levels of those attributes. In making their choices, responders prefer technologies that have a 

very low probability of generating Disease than other attributes. Responders seem not to 

consider Badsmell to be a very important attribute when making a choice about technology 

adoption.  
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Table 6: Household marginal willingness to pay per month, by class 
 

 Class 1 (Risk Averse) Class 2 (Innovators) Class 3 (Supporters) 

Attributes Mean 
MWTP 

95% CI Mean 
MWTP 

95% CI Mean 
MWTP 

95% CI 

Lifetime      -162.73 -1947.03 1621.57 4531.507    527.79 8535.218 -10266.75 -11898.60 -8634.91 

Easyuse     -483.37 -2005.85 1039.10 1681.66 -1426.69 4790.02 -6313.96 -7788.64   -4839.30   

Badsmell      1087.95 -260.37 2436.28 -1947.349 -4173.49 278.80 -2211.20 -3895.93   -526.49    

Disease 735.55 -2193.51 722.40 -1146.16 -3458.93 1166.59 1255.21 -1155.70 3666.13 

 
     
Table 7: Average monthly household MWTP (LCA mean, conditional-base and conditional interaction) 
 

 LCA Meana Conditional-Base Conditional Interaction 

Attributes Average 
Household 

MWTP  

95% CI Average 
Household 

MWTP 

95% CI Average 
Household  

MWTP 

95% CI 

Lifetime      -1404.65 -4232.90 1423.59 40506.93 -22944.40 103958.27    9418.36   -3503.93 22340.65 

Easyuse     -1468.99 -3758.98 820.99 17542.88    -15773.78 50859.53 -1340.05 -9810.18 7130.08 

Badsmell      -1576.92 -3478.06 324.22 11673.78   -11442.15 34789.72 2172.60 -6397.68 10742.88 

Disease -11.86 -2453.35 1980.35 -18333.85 -37403.70 735.99 -4684.552 -16077.30 6708.20 

 Mean MWTP and confidence intervals for LCA model are calculated as the sum of the MWTP and confidence intervals from each group, multiplied by the 
respective membership probability, 
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6: Conclusion and policy implications  

This  paper has investigated the factors that drive adoption of greywater treatment technology 

by using a novel econometric technique that accounts for household heterogeneity. The results 

show that households are sensitive to disease and lifetime duration of the technology, on top 

of all the provided attributes, when it comes to explaining the attributes that determine 

adoption. Interestingly, our results show that women are more sensitive to technologies that 

have a high probability to generate diseases than men. This means female heads of households 

in our surveyed areas are more cautious about the health status of their children and other 

family members than men.  When running our LCA, almost all the attributes are significant. 

Based on the goodness of fit of the model, three classes were formed: risk-averse (class 1), 

innovators (class 2), and greywater supporters (class 3). Class 1 has the least class membership 

and accounts for 15% of responders. In class 1, bad smell and ease of use are significant. Class 

2 has the highest share in our sample size, reflecting the widespread diffusion of greywater 

technology within urban households in Cape Town. Ease of use and the cost of the technology 

are significant within that class. Whereas for class 3, ease of use, bad smell, disease, and costs 

are all significant.  

Our results show the importance of better understanding the profile of the potential users in 

order to promote widespread adoption of greywater technology. Policy interventions may 

support initiatives that attempt to design better greywater treatment technologies, which control 

for smell and eliminate any possibility of risk from waterborne diseases.  This means that a 

massive investment in research and development should be promoted around greywater 

technology advancement. Alongside these technical interventions, our results show the 

importance of raising awareness, via public campaigns, around attributes that affect greywater 

technology. The benefits of such public campaigns arise from a better explanation of the real 

attributes of the technology in order for potential users to differentiate between the true 
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advantages associated with decentralized wastewater treatment and the fake news provided in 

some media outlets. Finally, costs may also hinder adoption of greywater technology. Policy 

interventions may be articulated around possible financial support that could assist poor 

households in acquiring such technology. The intention of this paper was not to study the 

impacts associated with such financial schemes on adoption rate. That will be addressed in 

further research. This paper attempted to understand the factors that drive adoption of 

greywater treatment technology in urban households. The underlying assumption being that 

adoption of greywater may help the city of Cape Town to reduce the impact of water scarcity.  
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Appendix  

Table A.1: Choice of water conservation measures  

Studies  Methodologies  Main factors that 
influence adoption of 
water-conservation 

measures  

Locations  Main findings  

Renwick and 

Archibald (1998) 

Household 

panel data  

(1) Change in water 

price, (2) quantity 

restriction, and (3) 

subsidies for water 

efficient technologies  

California (Santa 

Barbara, Goleta) 

Ø Demand side management (DSM) policies 

were effective in reducing water demand.  

Ø Price policies will allow a larger reduction in 

residential water demand in a lower-income 

community than in a higher-income 

community, all other factors held constant.  

Campbell et al. 

(2004) 

Multivariate 

regression 

analysis  

(1) Change in water 

price, and (2) 

regulation (low-flow 

fixtures and devices 

ordinance; wastewater 

ordinance 

enforcement; water-

Phoenix Ø Price increase leads to a reduction in water 

consumption. 

Ø If the ordinance of regulations are designed 

correctly, they can lead to large water savings.  
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saving equipment; 

education) that induce 

installation of water-

saving devices 

Geller, Erickson and 

Buttram (1983) 

Experimental 

approach  

(1) Educational 

(distribution of 

handbooks that 

describe a) the 

problems resulting 

from wasteful water 

use, b) the 

relationships between 

water and energy 

consumption, and c) 

methods for 

implementing water-

saving strategies in 

the home; (2) 

behavioral (daily 

written informational 

feedback with social 

Blackburg, Virginia Ø The ineffectiveness of feedback and education 

was a function of resources cost (i.e., water 

prices) and lack of economic incentives for 

reducing consumption.  

Ø The engineering devices were significantly 

effective in reducing consumption because, 

once in place, water is saved with little or no 

inconvenience or need to change ongoing 

behaviors. 

Ø  The installation of toilet dams, shower flow 

restrictors, and faucet aerators should have 

resulted in much larger water savings.  
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recommendation); and 

(3) engineering 

strategies that 

consisted of 

implementing water 

conservation devices. 

Perez-Urdiales et al. 

(2016) 

Household 

level panel 

data   

(1) Attitudinal factors, 

(2) knowledge and 

skills, (3) habits and 

routines, and (4) 

different water-

pricing structures.  

Granada, Spain  Ø Water demand management policies should be 

tailored to specific demand function of a 

particular group of consumers.  

Ø Both pricing and non-pricing policies 

(education programs, water rationing, retrofit 

subsidies, and public information campaigns) 

can be jointly applied to the most price-

responsive groups of consumers. 

Renwick and Green 

(2000) 

Cross-sectional 

analysis  

(1) Water allocation, 

(2) use restrictions, 

and (3) public 

education.  

California  Ø Price and demand side management (DSM) 

are effective in reducing water demand. 

Grafton et al. (2011) Econometric 

analysis that 

(1) Water pricing, (2) 

turning off water 

10 OECD countries 

(Canada, Australia, 

Ø The results found that a key policy lever in 

managing water demand is campaigns to 
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uses 

instrumental 

variable 

approaches  

while brushing teeth, 

(3) taking shower 

instead of bath, (4) 

plugging the sink 

when washing dishes, 

(5) watering gardens 

in the coolest part of 

the day, (6) collecting 

rainwater/recycling 

waste water.  

Italy, The 

Netherlands, 

Sweden, Norway, 

Czech Republic, 

Mexico, South 

Korea, France) 

conserve water use through a change in water-

use practices. 

Ø Volumetric water charges increase the 

probability of: a) turning off the water while 

brushing teeth, b) taking a shower instead of a 

bath, c) watering the garden in the coolest part 

of the day, and d) collecting rainwater and 

recycling wastewater. 

Millock and Nauges 

(2010) 

Econometric 

probit model  

(1) Socioeconomic 

variables  

10 OECD countries 

(Australia, Canada, 

Czech Republic, 

France, Italy, Korea, 

Mexico, The 

Netherlands, 

Norway and 

Sweden) 

Ø Environmental attitudes and ownership status 

are strong predictors of adoption of water-

efficient equipment, metering, and individual 

charge for water consumption, which lead to 

higher probability of adopting water-saving 

equipment, compared to households that paid 

a flat rate. 
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Nauges and Thomas 

(2000) 

Panel data  (1) Individual 

metering, (2) average 

and marginal price, 

and (3) climatic 

conditions. 

116 local 

communities in 

Eastern France  

Ø Results indicate that households respond to 

both average and marginal prices, with 

significant but low price elasticity of -0.22 in 

the case of average price.  

Ø A significant income effect is found with an 

income elasticity estimated at 0.1. Residential 

water consumption is low for individual 

houses with meter recording.  

Ø Non-price factors (low-flow equipment 

promotion, awareness campaigns and 

education programs) are more likely to induce 

a reduction in water consumption as compared 

to changes in water prices. Water demand 

remains poorly sensitive to price change. 
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Lam (2006) Theory of 

planned 

behavior 

(TPB) 

(1) Attitude, (2) 

normative belief, (3) 

vulnerability, (4) 

collective efficacy, 

and (5) behavioral 

intention.  

Taipei and 

Kaohsiung (China) 

Ø The author highlights that TPB alone was not 

sufficient to explain people’s intention to 

install  water-saving equipment, such as dual-

flush controllers in toilets; However, the 

subjective effectiveness of alternative 

solutions remains a good predictor for the 

intention. This is mainly because the dual-

flush controller was a new technology to the 

targeted households. Responders’ attitudes, 

subjective norms, and PBC regarding the 

retrofit might have been vague.  

Ø The author argues that strategies to shape 

people’s psychological aspects may be 

relatively ineffective.  A more powerful 

strategy would be to publicize the relative 

advantages of dual-flush controllers and other 

water-efficient appliances.  

Gilg and Barr 

(2006) 

Household 

data analysis  

(1) Social, (2) 

attitudinal, and (3) 

behavioral 

Devon  Ø Achievement of water-saving targets must 

account for: a) behavioral complexity, b) 
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composition of water 

saving activities  

behavioral groupings, and c) lifestyle of the 

households.  

Berk et al. (1993) Analysis of 

survey data  

(1) Installation of a 

water dam in toilets, 

(2) installation of 

water-saving toilets, 

(3) checking for 

plumbing leaks, and 

many other water 

conservation 

measures.  

California (Los 

Angeles and San 

Francisco Bay 

areas)  

Ø Households with higher socioeconomic status 

were more inclined to adopt a greater number 

of different water-conservation practices.  
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Figure A.3: Map of the City of Cape Town and areas visited during the survey 
 

 

Source: Authors elaboration. 

 


